Generating discrete planes with substitutions

Timo Jolivet Univ Paris Diderot, France Univ Turku, Finland

With Valérie Berthé Jérémie Bourdon Anne Siegel

Turku, 2013-09-16

- \blacktriangleright Compute cont. frac. expansion of normal vector ${\bf v}$
- Iterate corresponding sequence of

$$\sigma_1: \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 21 \end{cases} \quad \text{and} \quad \sigma_2: \begin{cases} 1 \mapsto 12 \\ 2 \mapsto 2 \end{cases}$$

- \blacktriangleright Compute cont. frac. expansion of normal vector ${\bf v}$
- Iterate corresponding sequence of

2

$$\sigma_1: \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 21 \end{cases} \quad \text{and} \quad \sigma_2: \begin{cases} 1 \mapsto 12 \\ 2 \mapsto 2 \end{cases}$$

 $\sigma_2(1) = 12$

- \blacktriangleright Compute cont. frac. expansion of normal vector ${\bf v}$
- Iterate corresponding sequence of

 $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$

$$\sigma_1: \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 21 \end{cases} \quad \text{and} \quad \sigma_2: \begin{cases} 1 \mapsto 12 \\ 2 \mapsto 2 \end{cases}$$

 $\sigma_2 \sigma_1 \sigma_2(1) = 12212$

- \blacktriangleright Compute cont. frac. expansion of normal vector ${\bf v}$
- Iterate corresponding sequence of

$$\sigma_1: \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 21 \end{cases} \quad \text{and} \quad \sigma_2: \begin{cases} 1 \mapsto 12 \\ 2 \mapsto 2 \end{cases}$$

 $\sigma_2 \sigma_1 \sigma_2 \sigma_1 \sigma_1 \sigma_2(1) = 122122121221212212$

Generate discrete planes?

Choose multidimensional continued fractions (non canonical)

Generate discrete planes?

- Choose multidimensional continued fractions (non canonical)
- Generate planes with multidimensional substitutions

Generate discrete planes?

- Choose multidimensional continued fractions (non canonical)
- Generate planes with multidimensional substitutions

• $\mathbf{v} \in \mathbb{R}^3$ such that $0 \leqslant \mathbf{v}_1 \leqslant \mathbf{v}_2 \leqslant \mathbf{v}_3$

$$(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 - \mathbf{v}_2)$$
 (1)

$$\mathbf{v} \mapsto \operatorname{sort}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 - \mathbf{v}_2) = \begin{cases} (\mathbf{v}_1, \mathbf{v}_3 - \mathbf{v}_2, \mathbf{v}_2) & (2) \end{cases}$$

$$\left(\left(\mathbf{v}_3 - \mathbf{v}_2, \ \mathbf{v}_1, \ \mathbf{v}_2 \right) \quad (3) \right)$$

• $\mathbf{v} \in \mathbb{R}^3$ such that $0 \leq \mathbf{v}_1 \leq \mathbf{v}_2 \leq \mathbf{v}_3$

Brun map:

$$\left((\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 - \mathbf{v}_2) \right)$$
 (1)

$$\mathbf{v} \mapsto \text{sort}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 - \mathbf{v}_2) = \begin{cases} (\mathbf{v}_1, \ \mathbf{v}_3 - \mathbf{v}_2, \ \mathbf{v}_2) & (2) \\ (\mathbf{v}_3 - \mathbf{v}_2, \ \mathbf{v}_1, \ \mathbf{v}_2) & (3) \end{cases}$$

$$(\mathbf{v}_3 - \mathbf{v}_2, \mathbf{v}_1, \mathbf{v}_2)$$
 (3)

• Iterate: expansion $(i_n) \in \{1, 2, 3\}^{\mathbb{N}}$

- $\mathbf{v} \in \mathbb{R}^3$ such that $0 \leqslant \mathbf{v}_1 \leqslant \mathbf{v}_2 \leqslant \mathbf{v}_3$
- Brun map:

$$\left((\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 - \mathbf{v}_2) \right)$$
 (1)

$$\mathbf{v} \mapsto \operatorname{sort}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 - \mathbf{v}_2) = \begin{cases} (\mathbf{v}_1, \mathbf{v}_3 - \mathbf{v}_2, \mathbf{v}_2) & (2) \end{cases}$$

$$\left(\left(\mathbf{v}_3 - \mathbf{v}_2, \ \mathbf{v}_1, \ \mathbf{v}_2 \right) \quad (3) \right)$$

► (1, *e*, *π*)

- $\mathbf{v} \in \mathbb{R}^3$ such that $0 \leqslant \mathbf{v}_1 \leqslant \mathbf{v}_2 \leqslant \mathbf{v}_3$
- Brun map:

$$\left((\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 - \mathbf{v}_2) \right)$$
 (1)

$$\mathbf{v} \mapsto \operatorname{sort}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 - \mathbf{v}_2) = \begin{cases} (\mathbf{v}_1, \mathbf{v}_3 - \mathbf{v}_2, \mathbf{v}_2) & (2) \end{cases}$$

$$\left(\left(\mathbf{v}_3 - \mathbf{v}_2, \ \mathbf{v}_1, \ \mathbf{v}_2 \right) \quad (3) \right)$$

•
$$(1, e, \pi)$$

• $(\pi - e, 1, e)$ (3)

• $\mathbf{v} \in \mathbb{R}^3$ such that $0 \leqslant \mathbf{v}_1 \leqslant \mathbf{v}_2 \leqslant \mathbf{v}_3$

$$\left((\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 - \mathbf{v}_2) \right)$$
 (1)

$$\mathbf{v} \mapsto \operatorname{sort}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 - \mathbf{v}_2) = \begin{cases} (\mathbf{v}_1, \mathbf{v}_3 - \mathbf{v}_2, \mathbf{v}_2) & (2) \end{cases}$$

$$\left(\left(\mathbf{v}_3 - \mathbf{v}_2, \ \mathbf{v}_1, \ \mathbf{v}_2 \right) \quad (3) \right)$$

•
$$(1, e, \pi)$$

• $(\pi - e, 1, e)$ (3)
• $(\pi - e, 1, e - 1)$ (1)

• $\mathbf{v} \in \mathbb{R}^3$ such that $0 \leqslant \mathbf{v}_1 \leqslant \mathbf{v}_2 \leqslant \mathbf{v}_3$

$$\left((\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 - \mathbf{v}_2) \right)$$
 (1)

$$\mathbf{v} \mapsto \operatorname{sort}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 - \mathbf{v}_2) = \begin{cases} (\mathbf{v}_1, \mathbf{v}_3 - \mathbf{v}_2, \mathbf{v}_2) & (2) \\ (\mathbf{v}_1, \mathbf{v}_3 - \mathbf{v}_2, \mathbf{v}_3) & (2) \end{cases}$$

$$\left(\left(\mathbf{v}_3 - \mathbf{v}_2, \ \mathbf{v}_1, \ \mathbf{v}_2 \right) \quad (3) \right)$$

$$\begin{array}{l} \blacktriangleright & (1,e,\pi) \\ \blacktriangleright & (\pi-e,1,e) & (3) \\ \blacktriangleright & (\pi-e,1,e-1) & (1) \\ \vdash & (\pi-e,e-2,1) & (2) \end{array}$$

• $\mathbf{v} \in \mathbb{R}^3$ such that $0 \leqslant \mathbf{v}_1 \leqslant \mathbf{v}_2 \leqslant \mathbf{v}_3$

$$\left((\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 - \mathbf{v}_2) \right)$$
 (1)

$$\mathbf{v} \mapsto \operatorname{sort}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 - \mathbf{v}_2) = \begin{cases} (\mathbf{v}_1, \mathbf{v}_3 - \mathbf{v}_2, \mathbf{v}_2) & (2) \\ (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 - \mathbf{v}_2, \mathbf{v}_3) & (2) \end{cases}$$

$$\left(\left(\mathbf{v}_3 - \mathbf{v}_2, \ \mathbf{v}_1, \ \mathbf{v}_2 \right) \quad (3) \right)$$

$$\begin{array}{l} \blacktriangleright & (1,e,\pi) \\ \blacktriangleright & (\pi-e,1,e) & (3) \\ \blacktriangleright & (\pi-e,1,e-1) & (1) \\ \vdash & (\pi-e,e-2,1) & (2) \\ \vdash & (3-e,\pi-e,e-2) & (3) \end{array}$$

• $\mathbf{v} \in \mathbb{R}^3$ such that $0 \leqslant \mathbf{v}_1 \leqslant \mathbf{v}_2 \leqslant \mathbf{v}_3$

Brun map:

$$\int (\mathbf{v}_1, \ \mathbf{v}_2, \ \mathbf{v}_3 - \mathbf{v}_2) \quad (1)$$

$$\mathbf{v} \mapsto \operatorname{sort}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 - \mathbf{v}_2) = \begin{cases} (\mathbf{v}_1, \mathbf{v}_3 - \mathbf{v}_2, \mathbf{v}_2) & (2) \\ (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 - \mathbf{v}_2, \mathbf{v}_3) & (2) \end{cases}$$

$$\left(\left(\mathbf{v}_3 - \mathbf{v}_2, \ \mathbf{v}_1, \ \mathbf{v}_2 \right) \quad (3) \right)$$

► Example:

$$\begin{array}{c} \bullet \ (1,e,\pi) \\ \bullet \ (\pi-e,1,e) \quad (3) \\ \bullet \ (\pi-e,1,e-1) \quad (1) \\ \bullet \ (\pi-e,e-2,1) \quad (2) \\ \bullet \ (3-e,\pi-e,e-2) \quad (3) \\ \bullet \ (3-e,2e-\pi-2,\pi-e) \quad (2) \end{array}$$

• $\mathbf{v} \in \mathbb{R}^3$ such that $0 \leqslant \mathbf{v}_1 \leqslant \mathbf{v}_2 \leqslant \mathbf{v}_3$

Brun map:

$$\left((\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 - \mathbf{v}_2) \right)$$
 (1)

$$\mathbf{v} \mapsto \operatorname{sort}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 - \mathbf{v}_2) = \begin{cases} (\mathbf{v}_1, \mathbf{v}_3 - \mathbf{v}_2, \mathbf{v}_2) & (2) \\ (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_2) & (2) \end{cases}$$

$$\left(\left(\mathbf{v}_3 - \mathbf{v}_2, \ \mathbf{v}_1, \ \mathbf{v}_2 \right) \quad (3) \right)$$

► Example:

• $\mathbf{v} \in \mathbb{R}^3$ such that $0 \leqslant \mathbf{v}_1 \leqslant \mathbf{v}_2 \leqslant \mathbf{v}_3$

Brun map:

$$\left((\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 - \mathbf{v}_2) \right)$$
 (1)

$$\mathbf{v} \mapsto \operatorname{sort}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 - \mathbf{v}_2) = \begin{cases} (\mathbf{v}_1, \mathbf{v}_3 - \mathbf{v}_2, \mathbf{v}_2) & (2) \\ (\mathbf{v}_1, \mathbf{v}_3 - \mathbf{v}_2, \mathbf{v}_3) & (2) \end{cases}$$

$$\left(\left(\mathbf{v}_3 - \mathbf{v}_2, \ \mathbf{v}_1, \ \mathbf{v}_2 \right) \quad (3) \right)$$

Example:

$$(1, e, \pi)$$

$$(\pi - e, 1, e) \quad (3)$$

$$(\pi - e, 1, e - 1) \quad (1)$$

$$(\pi - e, e - 2, 1) \quad (2)$$

$$(3 - e, \pi - e, e - 2) \quad (3)$$

$$(3 - e, 2e - \pi - 2, \pi - e) \quad (2)$$

$$(2)$$

• Expansion $(i_n)_{n \in \mathbb{N}} = 31232331211113231123...$

- $\mathbf{v} \in \mathbb{R}^3$ such that $0 \leqslant \mathbf{v}_1 \leqslant \mathbf{v}_2 \leqslant \mathbf{v}_3$
- Brun map:

$$\left(\left(\mathbf{v}_1, \ \mathbf{v}_2, \ \mathbf{v}_3 - \mathbf{v}_2 \right) \right)$$
 (1)

$$\mathbf{v} \mapsto \operatorname{sort}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 - \mathbf{v}_2) = \begin{cases} (\mathbf{v}_1, \mathbf{v}_3 - \mathbf{v}_2, \mathbf{v}_2) & (2) \end{cases}$$

$$(\mathbf{v}_3 - \mathbf{v}_2, \mathbf{v}_1, \mathbf{v}_2)$$
 (3)

Theorem [Brun 58]

1. v totally irrational $\iff (i_n)_{n\in\mathbb{N}}$ contains infinitely many 3's

- $\mathbf{v} \in \mathbb{R}^3$ such that $0 \leqslant \mathbf{v}_1 \leqslant \mathbf{v}_2 \leqslant \mathbf{v}_3$
- Brun map:

$$\left((\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 - \mathbf{v}_2) \right)$$
 (1)

$$\mathbf{v} \mapsto \operatorname{sort}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 - \mathbf{v}_2) = \begin{cases} (\mathbf{v}_1, \mathbf{v}_3 - \mathbf{v}_2, \mathbf{v}_2) & (2) \end{cases}$$

$$\langle (\mathbf{v}_3 - \mathbf{v}_2, \mathbf{v}_1, \mathbf{v}_2) \rangle$$
 (3)

Theorem [Brun 58]

- 1. v totally irrational $\iff (i_n)_{n\in\mathbb{N}}$ contains infinitely many 3's
- 2. Convergence: to every such $(i_n)_{n\in\mathbb{N}}$ corresponds a unique **v**

$$(\mathbf{v}_1, \ \mathbf{v}_2, \ \mathbf{v}_3 - \mathbf{v}_2)$$
 $(\mathbf{v}_1, \ \mathbf{v}_3 - \mathbf{v}_2, \ \mathbf{v}_2)$ $(\mathbf{v}_3 - \mathbf{v}_2, \ \mathbf{v}_1, \ \mathbf{v}_2)$

	$({f v}_1,\ {f v}_2,\ {f v}_3-{f v}_2)$	$({f v}_1,\ {f v}_3-{f v}_2,\ {f v}_2)$	$({f v}_3-{f v}_2,\ {f v}_1,\ {f v}_2)$
	\downarrow	\downarrow	\downarrow
	$\left(\begin{smallmatrix}1&0&0\\0&1&1\\0&0&1\end{smallmatrix}\right)$	$\left(\begin{smallmatrix}1&0&0\\0&0&1\\0&1&1\end{smallmatrix}\right)$	$\left(\begin{smallmatrix}0&0&1\\1&0&0\\0&1&1\end{smallmatrix}\right)$
	\downarrow	\downarrow	\downarrow
	$1\mapsto 1$	$1\mapsto 1$	$1\mapsto 2$
σ_i :	$2\mapsto 2$	$2\mapsto 3$	$2\mapsto 3$
	$3 \mapsto 32$	$3\mapsto 23$	$3 \mapsto 13$
	\downarrow	\downarrow	\downarrow
	$ \qquad \qquad$	$ \ \mapsto \ $	$ \begin{tabular}{cccc} & & & & & \\ & & & & & & \\ & & & & & & $
$\mathbf{E}_1^*(\sigma_i)$:	$[\bullet \mapsto [\bullet \\ \bullet \\$	$\overrightarrow{\blacktriangleright} \mapsto \stackrel{\bullet}{\diamond}$	$[\bullet \mapsto \bullet]$
	$ \Leftrightarrow \ \mapsto \ \stackrel{\bullet}{\diamondsuit} $	\diamondsuit \mapsto \diamondsuit	$\bigstar \mapsto \bigstar$

Discrete planes

Discrete plane $\Gamma_{\mathbf{v}} = \{ [\mathbf{x}, i]^* : 0 \leq \langle \mathbf{x}, \mathbf{v} \rangle < \langle \mathbf{e}_i, \mathbf{v} \rangle \}.$

 $\Gamma_{(1,\sqrt{2},\sqrt{17})}$:

$$\sigma \quad \stackrel{\text{duality}}{\longmapsto} \quad \mathbf{E}_1^*(\sigma)$$

$$\mathbf{E}_1^*(\sigma)([\mathbf{x},i]^\star) = \bigcup_{(p,j,s)\in\mathcal{A}^\star\times\mathcal{A}\times\mathcal{A}^\star \ : \ \sigma(j)=pis} [\mathbf{M}_{\sigma}^{-1}(\mathbf{x}+\mathbf{P}(s)),j]^\star$$

Example: $\mathbf{E}_1^*(\sigma)$ for $\sigma: 1 \mapsto 12, 2 \mapsto 13, 3 \mapsto 1$

Iterating $\mathbf{E}_1^*(\sigma)...$

$\mathbf{E}_{1}^{*}(\sigma) + \mathbf{discrete \ planes} = \heartsuit$

 $\begin{array}{l} \textbf{Proposition} ~ [\textbf{Arnoux-Ito, Fernique}] \\ \textbf{E}_1^*(\sigma)(\boldsymbol{\Gamma_v}) = \boldsymbol{\Gamma}_{{}^{t}\textbf{M}_{\sigma}\textbf{v}} \end{array}$

Corollary

The patches $\mathbf{E}_1^*(\sigma)^n(\mathbf{Q})$ grow within discrete planes

Main question

How do the $\mathbf{E}_1^*(\sigma)^n(\textcircled{})$ patches grow?

- 1. Do they cover arbitrarily large balls?
- 2. Do they cover arbitrarily large balls centered at 0?

1. Do they cover arbitrarily large balls?

- ► Not always obvious. . .
- Links with Pisot conjecture (see later)

2. Do they cover arbitrarily large balls centered at 0? Not always:

- Links with fractal topology, zero inner point, (see later)
- Links with number theory, finiteness properties (see later)

Back to Brun substitutions $(i_n)_{n \in \mathbb{N}} = 333333...$

Iterating $\mathbf{E}_1^*(\sigma_3) \cdots \mathbf{E}_1^*(\sigma_3)$

Back to Brun substitutions $(i_n)_{n \in \mathbb{N}} = 333333...$

Iterating $\mathbf{E}_1^*(\sigma_3) \cdots \mathbf{E}_1^*(\sigma_3)$

Back to Brun substitutions

 $(i_n)_{n\in\mathbb{N}}=3333333\ldots$

Iterating $\mathbf{E}_1^*(\sigma_3)\cdots \mathbf{E}_1^*(\sigma_3)$

Back to Brun substitutions

 $(i_n)_{n\in\mathbb{N}}=3333333\ldots$

Iterating $\mathbf{E}_1^*(\sigma_3)\cdots \mathbf{E}_1^*(\sigma_3)$

Iterating $\mathbf{E}_1^*(\sigma_3) \cdots \mathbf{E}_1^*(\sigma_3)$

Iterating $\mathbf{E}_1^*(\sigma_3) \cdots \mathbf{E}_1^*(\sigma_3)$

Back to Brun substitutions

 $(i_n)_{n\in\mathbb{N}}=3333333\ldots$

Iterating $\mathbf{E}_1^*(\sigma_3)\cdots \mathbf{E}_1^*(\sigma_3)$

The situtuation for Brun substitutions

Let $(i_n)_{n\in\mathbb{N}}\in\{1,2,3\}^{\mathbb{N}}$ with infinitely many 3's.

Guess

 $\mathbf{E}_1^*(\sigma_{i_1})\mathbf{E}_1^*(\sigma_{i_2})\cdots(\mathbf{O})$ contains arbitrarily large balls.

The situtuation for Brun substitutions

Let $(i_n)_{n \in \mathbb{N}} \in \{1, 2, 3\}^{\mathbb{N}}$ with infinitely many 3's.

Guess

 $\mathbf{E}_1^*(\sigma_{i_1})\mathbf{E}_1^*(\sigma_{i_2})\cdots(\mathbf{O})$ contains arbitrarily large balls.

Question

When does $\mathbf{E}_1^*(\sigma_{i_1})\mathbf{E}_1^*(\sigma_{i_2})\cdots(\bigcirc)$ contains large balls centered at 0?

The situtuation for Brun substitutions

Let $(i_n)_{n \in \mathbb{N}} \in \{1, 2, 3\}^{\mathbb{N}}$ with infinitely many 3's.

Guess

 $\mathbf{E}_1^*(\sigma_{i_1})\mathbf{E}_1^*(\sigma_{i_2})\cdots(\bigcirc)$ contains arbitrarily large balls.

Question

When does $\mathbf{E}_1^*(\sigma_{i_1})\mathbf{E}_1^*(\sigma_{i_2})\cdots(\bigcirc)$ contains large balls centered at 0?

Guess

There exists a finite seed \mathcal{V} such that $\mathbf{E}_1^*(\sigma_{i_1})\mathbf{E}_1^*(\sigma_{i_2})\cdots(\mathcal{V})$ contains large balls centered at 0.

Main result

Let $(i_n)_{n\in\mathbb{N}}\in\{1,2,3\}^{\mathbb{N}}$ with infinitely many 3's.

Theorem [Berthé-Bourdon-J-Siegel]

The patterns $\mathbf{E}_1^*(\sigma_{i_1})\mathbf{E}_1^*(\sigma_{i_2})\cdots(\bigcirc)$

- 1. always contain arbitrarily large balls
- 2. contain large balls centered at ${\bf 0}$

 $\iff \text{there is an infinite path } \cdots \stackrel{i_2}{\to} \bullet \stackrel{i_1}{\to} \bullet \text{ in:}$

3. always contain large balls centered at 0 when starting from a finite seed \mathcal{V} (does not depend on (i_i))

Tools

Initial idea of Ito-Ohtsuki 1994, and:

- 1. Annulus property
- 2. "Local rules", covering properties
- 3. Generation graphs

Unfortunately the annulus property doesn't always hold:

▶ We have to be more careful.

- We have to be more careful.
- ► Stronger assumptions on *A*: covering properties.

- We have to be more careful.
- ► Stronger assumptions on *A*: covering properties.

- We have to be more careful.
- ► Stronger assumptions on *A*: strong covering properties.
Covering properties for the annulus property

Unfortunately the annulus property doesn't always hold:

- We have to be more careful.
- ► Stronger assumptions on *A*: strong covering properties.

Proposition: the annulus property holds with these restrictions.

Generation graph

Bad approach:

Brun, Jacobi-Perron substitutions:

Generation graph

New approach:

$f_a = [(1, 1, -1), 1]^{\star}$	$f_d = [(-1, 1, 0), 2]^{\star}$	$f_g = [(-1, 0, 1), 2]^{\star}$
$f_b = [(1, -1, 1), 3]^*$	$f_e = [(-1, 0, 1), 3]^{\star}$	$f_h = [(-1, -1, 1), 3]^*$
$f_c = [(1, 1, -1), 2]^*$	$f_f = [(-1, 1, 0), 3]^*$	$f_i = [(1, 1, -1), 3]^\star.$

- Full understanding of the bad language
- Allows to easily compute the finite seed

Applications: Dynamics

▶ Pisot conjecture \Leftrightarrow the $\mathbf{E}_1^*(\sigma)^n(\mathbf{O})$ contain large balls [Ito-Rao 2006]

Applications: Dynamics

- ▶ Pisot conjecture \Leftrightarrow the $\mathbf{E}_1^*(\sigma)^n(\mathbf{O})$ contain large balls [Ito-Rao 2006]
- Hence:

Pisot conjecture holds for products of substitutions of Brun, Arnoux-Rauzy, Jacobi-Perron, ...

► Seed is enough ⇔ 0 is an inner point of the Rauzy fractal [Berthé-Siegel 05]

► Seed is enough ⇔ 0 is an inner point of the Rauzy fractal [Berthé-Siegel 05]

So: the language also ► characterizes this property! Let's try!

- ► Seed is enough ⇔ 0 is an inner point of the Rauzy fractal [Berthé-Siegel 05]
- So: the language also ► characterizes this property! Let's try!

 $\sigma = \sigma_3 \sigma_3 \sigma_3 \sigma_2$

► Seed is enough ⇔ 0 is an inner point of the Rauzy fractal [Berthé-Siegel 05]

So: the language also ► characterizes this property! Let's try!

- ► Seed is enough ⇔ 0 is an inner point of the Rauzy fractal [Berthé-Siegel 05]
- So: the language also ► characterizes this property! Let's try!

 $\sigma = \sigma_1 \sigma_2 \sigma_3 \sigma_2 \sigma_3$ 1.5

► Seed is enough ⇔ 0 is an inner point of the Rauzy fractal [Berthé-Siegel 05]

So: the language also ► characterizes this property! Let's try!

► Seed is enough ⇔ 0 is an inner point of the Rauzy fractal [Berthé-Siegel 05]

Other topological properties:

► The Rauzy fractals are connected

Other topological properties:

- ► The Rauzy fractals are connected
- Interesting question: which products yield simply connected fractals?

β-expansions: we characterize the finite products satisfying some
 (F) property: Fin(β) = Z[1/β]≥0

- β-expansions: we characterize the finite products satisfying some
 (F) property: Fin(β) = Z[1/β]≥0
- Multidimensional continued fraction algorithms: new proofs of convergence

- ▶ β-expansions: we characterize the finite products satisfying some (F) property: Fin(β) = ℤ[1/β]_{≥0}
- Multidimensional continued fraction algorithms: new proofs of convergence
- Fractal tiles for every cubic number field

- ▶ β-expansions: we characterize the finite products satisfying some (F) property: Fin(β) = ℤ[1/β]_{≥0}
- Multidimensional continued fraction algorithms: new proofs of convergence
- Fractal tiles for every cubic number field

Question

```
Computer experiments suggest:
The Pisot eigenvalue of \mathbf{M}_{i_1} \cdots \mathbf{M}_{i_n} is totally real when i_1 \cdots i_n is in the language.
```

Why?

► Understand better the "bad" language w.r.t. number theory

- ► Understand better the "bad" language w.r.t. number theory
- Language of simply connected fractal

- ► Understand better the "bad" language w.r.t. number theory
- Language of simply connected fractal
- Generalize to
 - reducible
 - hyperbolic (no eigenvalue of modulus 1)
 - non-unimodular

- ► Understand better the "bad" language w.r.t. number theory
- Language of simply connected fractal
- Generalize to
 - reducible
 - hyperbolic (no eigenvalue of modulus 1)
 - non-unimodular

Thank you for your attention