Toral automorphisms, Markov Partitions and fractals

Timo Jolivet University Paris 7, France University of Turku, Finland

July 20, 2012

Mathematics department seminar 中山大学 广州, 中国

Aim: coding orbits of $T: X \to X$

Aim: coding orbits of $T: X \to X$

Partition $\mathcal{P} = \{P_1, P_2, P_3, P_4, P_5\}$

Aim: coding orbits of $T: X \to X$

 $\begin{array}{l} \mathsf{Partition} \ \mathcal{P} = \{P_1, P_2, P_3, P_4, P_5\}\\ \mathsf{Coding of} \ x : \qquad 1 \end{array}$

Aim: coding orbits of $T: X \to X$

Partition $\mathcal{P} = \{P_1, P_2, P_3, P_4, P_5\}$ Coding of x: 1 2 **Aim:** coding orbits of $T: X \to X$

 $\label{eq:Partition} \begin{array}{l} \mathcal{P} = \{P_1, P_2, P_3, P_4, P_5\} \\ \mbox{Coding of } x: & 1 \ 2 \ 3 \end{array}$

Aim: coding orbits of $T: X \to X$

Partition $\mathcal{P} = \{P_1, P_2, P_3, P_4, P_5\}$ Coding of x: 1 2 3 5

Aim: coding orbits of $T: X \to X$

Partition $\mathcal{P} = \{P_1, P_2, P_3, P_4, P_5\}$ Coding of x: 1 2 3 5 5

Aim: coding orbits of $T: X \to X$

Partition $\mathcal{P} = \{P_1, P_2, P_3, P_4, P_5\}$ Coding of x: 1 2 3 5 5 4

Aim: coding orbits of $T: X \to X$

Partition $\mathcal{P} = \{P_1, P_2, P_3, P_4, P_5\}$ Coding of x: 1 2 3 5 5 4 2

Aim: coding orbits of $T: X \to X$

Partition $\mathcal{P} = \{P_1, P_2, P_3, P_4, P_5\}$ Coding of x: 1 2 3 5 5 4 2 1

Aim: coding orbits of $T: X \to X$

Partition $\mathcal{P} = \{P_1, P_2, P_3, P_4, P_5\}$ Coding of x: 1 2 3 5 5 4 2 1 5

Aim: coding orbits of $T: X \to X$

Partition $\mathcal{P} = \{P_1, P_2, P_3, P_4, P_5\}$ Coding of $x : \cdots 1 \ 2 \ 3 \ 5 \ 5 \ 4 \ 2 \ 1 \ 5 \ \cdots$

Aim: coding orbits of $T: X \to X$

Partition $\mathcal{P} = \{P_1, P_2, P_3, P_4, P_5\}$ Coding of $x: \cdots 1 \ 2 \ 3 \ 5 \ 5 \ 4 \ 2 \ 1 \ 5 \ \cdots$

 \blacktriangleright Let $\Sigma_{\mathcal{P}}$ be the set of all codings ($\Sigma_{\mathcal{P}} \subseteq \{1, 2, 3, 4, 5\}^{\mathbb{Z}}$)

Aim: coding orbits of $T: X \to X$

Partition $\mathcal{P} = \{P_1, P_2, P_3, P_4, P_5\}$ Coding of $x: \cdots 1 \ 2 \ 3 \ 5 \ 5 \ 4 \ 2 \ 1 \ 5 \ \cdots$

• Let $\Sigma_{\mathcal{P}}$ be the set of all codings $(\Sigma_{\mathcal{P}} \subseteq \{1, 2, 3, 4, 5\}^{\mathbb{Z}})$

 $(\Sigma_{\mathcal{P}}, \mathsf{shift letter})$: symbolic dynamical system

Aim: coding orbits of $T: X \to X$

Partition $\mathcal{P} = \{P_1, P_2, P_3, P_4, P_5\}$ Coding of $x: \cdots 1 \ 2 \ 3 \ 5 \ 5 \ 4 \ 2 \ 1 \ 5 \ \cdots$

 \blacktriangleright Let $\Sigma_{\mathcal{P}}$ be the set of all codings ($\Sigma_{\mathcal{P}} \subseteq \{1, 2, 3, 4, 5\}^{\mathbb{Z}}$)

 $(\Sigma_{\mathcal{P}}, \text{shift letter})$: symbolic dynamical system \blacktriangleright Idea : Understand (X, T) using $(\Sigma_{\mathcal{P}}, \text{shift})$

Aim: coding orbits of $T: X \to X$

Partition $\mathcal{P} = \{P_1, P_2, P_3, P_4, P_5\}$ Coding of $x : \cdots 1 \ 2 \ 3 \ 5 \ 5 \ 4 \ 2 \ 1 \ 5 \ \cdots$

• Let $\Sigma_{\mathcal{P}}$ be the set of all codings $(\Sigma_{\mathcal{P}} \subseteq \{1, 2, 3, 4, 5\}^{\mathbb{Z}})$

$(\Sigma_{\mathcal{P}}, \mathsf{shift letter})$: symbolic dynamical system

- → Idea : Understand (X,T) using $(\Sigma_{\mathcal{P}}, \mathsf{shift})$
- ➡ Partition \mathcal{P} must be well chosen!

• \mathcal{P} is well chosen if :

• \mathcal{P} is well chosen if :

To every coding $(x_n) \in \Sigma_{\mathcal{P}}$ corresponds only one $x \in X$:

 $x \in P_{x_0}$

• \mathcal{P} is well chosen if :

$$\begin{array}{rcccc} x & \in & P_{x_0} \\ T(x) & \in & P_{x_1} \end{array}$$

• \mathcal{P} is well chosen if :

$$\begin{array}{rccccc} x & \in & P_{x_0} \\ T(x) & \in & P_{x_1} \\ T^2(x) & \in & P_{x_2} \end{array}$$

• \mathcal{P} is well chosen if :

• \mathcal{P} is well chosen if :

. . .

To every coding $(x_n) \in \Sigma_{\mathcal{P}}$ corresponds only one $x \in X$:

. . .

• \mathcal{P} is well chosen if :

. . .

To every coding $(x_n) \in \Sigma_{\mathcal{P}}$ corresponds only one $x \in X$:

. . .

• \mathcal{P} is well chosen if :

. . .

To every coding $(x_n) \in \Sigma_{\mathcal{P}}$ corresponds only one $x \in X$:

. . .

• Then we have: a symbolic representation of (X,T) by \mathcal{P} :

Simplest example : multiply by 10 in [0, 1] $X = [0,1] \qquad T: x \mapsto 10x \pmod{1} \qquad \mathcal{P} = \left\{ \left\lfloor \frac{i}{10}, \frac{i+1}{10} \right\lfloor : 0 \leqslant i \leqslant 9 \right\} \right\}$

Orbit of
$$\pi - 3$$

Simplest example : multiply by 10 in [0, 1] $X = [0,1] \qquad T: x \mapsto 10x \pmod{1} \qquad \mathcal{P} = \left\{ \left\lfloor \frac{i}{10}, \frac{i+1}{10} \right\lfloor : 0 \leqslant i \leqslant 9 \right\} \right\}$

Drbit of
$$\pi-3$$
 :
 0.1415

Simplest example : multiply by 10 in [0, 1] $X = [0,1] \qquad T: x \mapsto 10x \pmod{1} \qquad \mathcal{P} = \left\{ \left\lfloor \frac{i}{10}, \frac{i+1}{10} \right\lfloor : 0 \leqslant i \leqslant 9 \right\} \right\}$

Orbit of $\pi - 3$:

Simplest example : multiply by 10 in [0, 1] $X = [0,1] \qquad T: x \mapsto 10x \pmod{1} \qquad \mathcal{P} = \left\{ \left\lfloor \frac{i}{10}, \frac{i+1}{10} \right\lfloor : 0 \leqslant i \leqslant 9 \right\} \right\}$

Orbit of $\pi - 3$: 0.14159265358979312...

Orbit of $\pi - 3$: 0.14159265358979312...

Codings \iff decimal expansions Valid codings: $\Sigma_{\mathcal{P}} = \{0, \dots, 9\}^{\mathbb{Z}}$

Remark: coding $\varphi : \Sigma_{\mathcal{P}} \to X$ is not injective: $0.999 \cdots = 1.000 \cdots$ or $0.46999 \cdots = 0.47000 \cdots$ (every decimal number has two preimages)

Toral automorphisms

Images : Visualizing Toral Automorphisms, M. Grayson, B. Kitchens, G. Zettler

Images : Visualizing Toral Automorphisms, M. Grayson, B. Kitchens, G. Zettler

Images : Visualizing Toral Automorphisms, M. Grayson, B. Kitchens, G. Zettler

Images : Visualizing Toral Automorphisms, M. Grayson, B. Kitchens, G. Zettler

Images : Visualizing Toral Automorphisms, M. Grayson, B. Kitchens, G. Zettler

Images : Visualizing Toral Automorphisms, M. Grayson, B. Kitchens, G. Zettler

Choose a good partition \mathcal{P} of $[0,1]^2$

Choose a good partition \mathcal{P} of $[0,1]^2$

We want: To every sequence $(x_n) \in \Sigma_{\mathcal{P}}$ corresponds only one $x \in X$.

We want: To every sequence $(x_n) \in \Sigma_{\mathcal{P}}$ corresponds only one $x \in X$. For example, for $(x_n) = \cdots 13232123 \cdots$ we have:

 $T(P_2) \cap P_3$

We want: To every sequence $(x_n) \in \Sigma_{\mathcal{P}}$ corresponds only one $x \in X$. For example, for $(x_n) = \cdots 13232123 \cdots$ we have:

 $32\underline{3}$ $T^2(P_3) \cap T(P_2) \cap P_3$

We want: To every sequence $(x_n) \in \Sigma_{\mathcal{P}}$ corresponds only one $x \in X$. For example, for $(x_n) = \cdots 13232123 \cdots$ we have:

 $(\Sigma_{\mathcal{P}}, \mathsf{shift})$ is then a **good representation** of (X, T).

Precise description of $\Sigma_{\mathcal{P}}$

Precise description of $\Sigma_{\mathcal{P}}$

Precise description of $\Sigma_{\mathcal{P}}$

Precise description of $\Sigma_{\mathcal{P}}$

▶ Geometrical inspection: ij and jk admissible ⇒ ijk admissible
➡ k does not depend on i in ijk (Markov property)

Precise description of $\Sigma_{\mathcal{P}}$

▶ Geometrical inspection: ij and jk admissible ⇒ ijk admissible
➡ k does not depend on i in ijk (Markov property)

So: $\Sigma_{\mathcal{P}} = \{\text{sequences avoiding } 11, 22, 31, 33\} \subseteq \{1, 2, 3\}^{\mathbb{Z}}.$

Precise description of $\Sigma_{\mathcal{P}}$

▶ Geometrical inspection: ij and jk admissible ⇒ ijk admissible
➡ k does not depend on i in ijk (Markov property)

So: $\Sigma_{\mathcal{P}} = \{\text{sequences avoiding } 11, 22, 31, 33\} \subseteq \{1, 2, 3\}^{\mathbb{Z}}.$

• $(\Sigma_{\mathcal{P}}, \text{shift})$ is then a subshift of finite type • \mathcal{P} is a Markov partition

Consequences

- Periodic points of $\Sigma_{\mathcal{P}}$ are dense, so those of $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ are too.
- Entropy can easily be computed.
- $\Sigma_{\mathcal{P}}$ is transitive so $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ too.
- $\Sigma_{\mathcal{P}}$ is mixing so $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ too.

Consequences

- Periodic points of $\Sigma_{\mathcal{P}}$ are dense, so those of $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ are too.
- Entropy can easily be computed.
- $\Sigma_{\mathcal{P}}$ is transitive so $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ too.
- $\Sigma_{\mathcal{P}}$ is mixing so $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ too.

We have a general result:

Theorem [Berg 67, Adler-Weiss 67]

There exists a Markov partition for every 2×2 matrix $M \in \mathcal{M}_2(\mathbb{Z})$ s.t.:

- $det(M) = \pm 1;$
- ▶ *M* is hyperbolic (one expanding e.v., one contracting e.v.).

► Explicit construction with two rectangles!

What about...

dimension ≥ 3 ?

Theorem ©[Sinaĭ 68, Bowen 70's]

Markov partitions exist in any dimension for every hyperbolic integer matrix with determinant $\pm 1.$

Theorem ©[Sinaĭ 68, Bowen 70's]

Markov partitions exist in any dimension for every hyperbolic integer matrix with determinant $\pm 1.$

• "Optimal" : \exists e.v. of modulus $1 \Longrightarrow$ no Markov partition [Lind 78]

Theorem ©[Sinaĭ 68, Bowen 70's]

Markov partitions exist in any dimension for every hyperbolic integer matrix with determinant $\pm 1.$

- \blacktriangleright "Optimal" : \exists e.v. of modulus $1 \Longrightarrow$ no Markov partition [Lind 78]
- ➡ But: non-explicit construction...

Theorem ©[Sinaĭ 68, Bowen 70's]

Markov partitions exist in any dimension for every hyperbolic integer matrix with determinant $\pm 1.$

- "Optimal" : \exists e.v. of modulus $1 \Longrightarrow$ no Markov partition [Lind 78]
- ➡ But: non-explicit construction...
- Even worse:

Theorem ©[Sinaĭ 68, Bowen 70's]

Markov partitions exist in any dimension for every hyperbolic integer matrix with determinant $\pm 1.$

- "Optimal" : \exists e.v. of modulus $1 \Longrightarrow$ no Markov partition [Lind 78]
- ➡ But: non-explicit construction...
- ➡ Even worse:

Theorem © [Bowen 78, Cawley 91]

In dimension ≥ 3 , the partition pieces have **fractal boundary**.

 \blacktriangleright No easy possible construction like for 2×2 matrices

Theorem ©[Sinaĭ 68, Bowen 70's]

Markov partitions exist in any dimension for every hyperbolic integer matrix with determinant $\pm 1.$

- "Optimal" : \exists e.v. of modulus $1 \Longrightarrow$ no Markov partition [Lind 78]
- ➡ But: non-explicit construction...
- Even worse:

Theorem © [Bowen 78, Cawley 91]

In dimension ≥ 3 , the partition pieces have **fractal boundary**.

- \blacktriangleright No easy possible construction like for 2×2 matrices
- 🛥 But. . .

A Markov partition in dimension 3 for $\left(\begin{smallmatrix}1&1&1\\1&0&0\\0&1&0\end{smallmatrix}\right)$!

A Markov partition in dimension 3 for $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$!

A Markov partition in dimension 3 for $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$!

A Markov partition in dimension 3 for $\left(\begin{smallmatrix}1&1&1\\1&0&0\\0&1&0\end{smallmatrix}\right)$!

A Markov partition in dimension 3 for $\left(\begin{smallmatrix}1&1&1\\1&0&0\\0&1&0\end{smallmatrix}\right)$!

A Markov partition in dimension 3 for $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$!

We need new tools to explain further.

Rauzy fractals

Substitution:

$$\sigma : \begin{cases} 1 & \mapsto & 12 \\ 2 & \mapsto & 13 \\ 3 & \mapsto & 1 \end{cases} \qquad \mathbf{M}_{\sigma} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Substitution:

$$\sigma : \begin{cases} 1 & \mapsto & 12 \\ 2 & \mapsto & 13 \\ 3 & \mapsto & 1 \end{cases} \qquad \mathbf{M}_{\sigma} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Substitution:

$$\sigma : \begin{cases} 1 & \mapsto & 12 \\ 2 & \mapsto & 13 \\ 3 & \mapsto & 1 \end{cases} \qquad \mathbf{M}_{\sigma} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Substitution:

$$\sigma : \begin{cases} 1 & \mapsto & 12 \\ 2 & \mapsto & 13 \\ 3 & \mapsto & 1 \end{cases} \qquad \mathbf{M}_{\sigma} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Substitution:

$$\sigma : \begin{cases} 1 & \mapsto & 12 \\ 2 & \mapsto & 13 \\ 3 & \mapsto & 1 \end{cases} \qquad \mathbf{M}_{\sigma} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Substitution:

$$\sigma : \begin{cases} 1 & \mapsto & 12 \\ 2 & \mapsto & 13 \\ 3 & \mapsto & 1 \end{cases} \qquad \mathbf{M}_{\sigma} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Substitution:

$$\sigma : \begin{cases} 1 & \mapsto & 12 \\ 2 & \mapsto & 13 \\ 3 & \mapsto & 1 \end{cases} \qquad \mathbf{M}_{\sigma} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

1213121312131211213121121312

Substitution:

$$\sigma : \begin{cases} 1 & \mapsto & 12 \\ 2 & \mapsto & 13 \\ 3 & \mapsto & 1 \end{cases} \qquad \mathbf{M}_{\sigma} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Substitution:

$$\sigma : \begin{cases} 1 & \mapsto & 12 \\ 2 & \mapsto & 13 \\ 3 & \mapsto & 1 \end{cases} \qquad \mathbf{M}_{\sigma} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

- σ is **Pisot**: (special case of hyperbolic)
 - Exactly one expanding e.v. β
 - Other e.v. are contracting

Substitution:

$$\sigma : \begin{cases} 1 & \mapsto & 12 \\ 2 & \mapsto & 13 \\ 3 & \mapsto & 1 \end{cases} \qquad \mathbf{M}_{\sigma} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

- σ is **Pisot**: (special case of hyperbolic)
 - Exactly one expanding e.v. β
 - Other e.v. are contracting

Action of \mathbf{M}_{σ} on \mathbb{R}^3 :

- A expanding line spanned by eigenvector v_{β}
- A contractanting plane spanned by the two other eigenvectors

- Compact
- Fractal boundary

- Compact
- Fractal boundary
- Self-similar structure

- Compact
- Fractal boundary
- Self-similar structure
- Domain exchange

- Compact
- Fractal boundary
- Self-similar structure
- Domain exchange

- Compact
- Fractal boundary
- Self-similar structure
- Domain exchange

- Compact
- Fractal boundary
- Self-similar structure
- Domain exchange

- Compact
- Fractal boundary
- Self-similar structure
- Domain exchange

- Compact
- Fractal boundary
- Self-similar structure
- Domain exchange

- Compact
- Fractal boundary
- Self-similar structure
- Domain exchange

- Compact
- Fractal boundary
- Self-similar structure
- Domain exchange

- Compact
- Fractal boundary
- Self-similar structure
- Domain exchange

- Compact
- Fractal boundary
- Self-similar structure
- Domain exchange

• σ : 1 \mapsto 12, 2 \mapsto 1312, 3 \mapsto 112

- $\blacktriangleright \ \sigma \ : \ 1 \mapsto 12, \ 2 \mapsto 1312, \ 3 \mapsto 112$
- Fixed point: x = 1

- $\blacktriangleright \ \sigma \ : \ 1 \mapsto 12, \ 2 \mapsto 1312, \ 3 \mapsto 112$
- Fixed point: x = 12

- $\blacktriangleright \ \sigma \ : \ 1 \mapsto 12, \ 2 \mapsto 1312, \ 3 \mapsto 112$
- Fixed point: x = 121312

- σ : 1 \mapsto 12, 2 \mapsto 1312, 3 \mapsto 112
- Fixed point: x = 1213121212121312

- $\blacktriangleright \ \sigma \ : \ 1 \mapsto 12, \ 2 \mapsto 1312, \ 3 \mapsto 112$
- Fixed point: x = 1213121212131212131212131212131212131212131212

- $\blacktriangleright \ \sigma \ : \ 1 \mapsto 12, \ 2 \mapsto 1312, \ 3 \mapsto 112$
- Fixed point: x = 121312121212131212131212131212131212131212
- $X_{\sigma} = \text{closure}(\{\text{shift}^n(x) : x \in \mathbb{Z}\}) \subseteq \{1, 2, 3\}^{\mathbb{Z}}$

- $\blacktriangleright \ \sigma \ : \ 1 \mapsto 12, \ 2 \mapsto 1312, \ 3 \mapsto 112$
- Fixed point: x = 121312121212131212131212131212131212131212
- $X_{\sigma} = \operatorname{closure}(\{\operatorname{shift}^n(x) : x \in \mathbb{Z}\}) \subseteq \{1, 2, 3\}^{\mathbb{Z}}$
- Symbolic dynamcal system $(X_{\sigma}, \mathsf{shift})$...

- $\blacktriangleright \ \sigma \ : \ 1 \mapsto 12, \ 2 \mapsto 1312, \ 3 \mapsto 112$
- Fixed point: x = 121312121212131212131212131212131212131212
- $X_{\sigma} = \operatorname{closure}(\{\operatorname{shift}^n(x) : x \in \mathbb{Z}\}) \subseteq \{1, 2, 3\}^{\mathbb{Z}}$
- Symbolic dynamcal system $(X_{\sigma}, \mathsf{shift})$...
- ... very different from subshifts of finite type $\Sigma_{\mathcal{P}}$:
 - minimal sytem,
 - zero entropy,
 - no periodic points...

Properties: dynamics of $(X_{\sigma}, \text{shift})$, geometrically

Orbit : 2131212121312121312121

Properties: dynamics of $(X_{\sigma}, \text{shift})$, geometrically

Orbit : $\cdots 2131212121312121312121 \cdots \in X_{\sigma} \subseteq \{1, 2, 3\}^{\mathbb{Z}}$

Properties: dynamics of $(X_{\sigma}, \text{shift})$, geometrically

Orbit : $\cdots 2131212112121312121312121 \cdots \in X_{\sigma} \subseteq \{1, 2, 3\}^{\mathbb{Z}}$

Properties: tilings

Self-similar tiling (aperiodic) :

Periodic tiling :

(1) Domain exchange:

(3) Shift:

 $\cdots \underline{2} \underline{131212112} \cdots \in X_{\sigma}$

(1) Domain exchange:

(3) Shift:

 $\cdots 2\underline{1}31212112 \cdots \in X_{\sigma}$

(1) Domain exchange:

(3) Shift:

 $\cdots 21\underline{3}1212112 \cdots \in X_{\sigma}$

(1) Domain exchange:

(3) Shift:

 $\cdots 213\underline{1}212112 \cdots \in X_{\sigma}$

(1) Domain exchange:

(3) Shift:

 $\cdots 2131\underline{2}12112 \cdots \in X_{\sigma}$

(1) Domain exchange:

(3) Shift:

 $\cdots \underline{2} \underline{131212112} \cdots \in X_{\sigma}$

(1) Domain exchange:

(3) Shift:

 $\cdots 2\underline{1}31212112 \cdots \in X_{\sigma}$

(1) Domain exchange:

(3) Shift:

 $\cdots 21\underline{3}1212112 \cdots \in X_{\sigma}$

(1) Domain exchange:

(3) Shift:

 $\cdots 213\underline{1}212112 \cdots \in X_{\sigma}$

(1) Domain exchange:

(3) Shift:

 $\cdots 2131\underline{2}12112 \cdots \in X_{\sigma}$

(1) Domain exchange:

(3) Shift:

 $\cdots 21312\underline{1}2112 \cdots \in X_{\sigma}$

(1) Domain exchange:

(3) Shift:

 $\cdots 2131212112 \cdots \in X_{\sigma}$

(1) Domain exchange:

(3) Shift:

 $\cdots \underline{2} \underline{1} \underline{3} \underline{1} \underline{2} \underline{1} \underline{2} \underline{1} \underline{2} \cdots \in X_{\sigma}$

(1) Domain exchange:

(3) Shift:

 $\cdots \underline{2131212112} \cdots \in X_{\sigma}$

(1) Domain exchange:

(3) Shift:

 $\cdots 21\underline{3}1212112 \cdots \in X_{\sigma}$

(1) Domain exchange:

(3) Shift:

 $\cdots \underline{21\underline{3}1212112} \cdots \in X_{\sigma}$

(1) \iff (2) \iff (3)

►
$$(X_{\sigma}, \text{shift}) \cong (\textcircled{} , \text{exchange}) \cong (\mathbb{T}^2, \text{translation})$$

•
$$(X_{\sigma}, \text{shift}) \cong (\square, \text{exchange}) \cong (\mathbb{T}^2, \text{translation})$$

➡ Other example of symbolic coding (with partition [▲]

•
$$(X_{\sigma}, \text{shift}) \cong (\textcircled{}, \text{exchange}) \cong (\mathbb{T}^2, \text{translation})$$

- ➡ Other example of symbolic coding (with partition [♣])
- Partition not markov because X_σ is not of finite type (but still interesting!)

•
$$(X_{\sigma}, \text{shift}) \cong (\textcircled{}, \text{exchange}) \cong (\mathbb{T}^2, \text{translation})$$

➡ Other example of symbolic coding (with partition [♣])

 Partition not markov because X_σ is not of finite type (but still interesting!)

➡ Construction available for all Pisot substitutions (Pisot conjecture)

•
$$(X_{\sigma}, \text{shift}) \cong (\textcircled{}, \text{exchange}) \cong (\mathbb{T}^2, \text{translation})$$

➡ Other example of symbolic coding (with partition [♣])

 Partition not markov because X_σ is not of finite type (but still interesting!)

(Pisot

← Construction available for all Pisot substitutions conjecture)

• Back to the action of $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ on \mathbb{T}^3

•
$$(X_{\sigma}, \text{shift}) \cong (\textcircled{}, \text{exchange}) \cong (\mathbb{T}^2, \text{translation})$$

➡ Other example of symbolic coding (with partition [♣])

 Partition not markov because X_σ is not of finite type (but still interesting!)

(Pisot

➡ Construction available for all Pisot substitutions conjecture)

- Back to the action of $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ on \mathbb{T}^3
- \blacktriangleright We now build a Markov partition for $(\mathbb{T}^3,\mathbf{M}_\sigma)$

1. Take the Rauzy fractal in the contracting plane

- 1. Take the Rauzy fractal in the contracting plane
- 2. "Suspend" each domain in the expanding direction

- 1. Take the Rauzy fractal in the contracting plane
- 2. "Suspend" each domain in the expanding direction

- 1. Take the Rauzy fractal in the contracting plane
- 2. "Suspend" each domain in the expanding direction

- 1. Take the Rauzy fractal in the contracting plane
- 2. "Suspend" each domain in the expanding direction
- 3. It tiles periodically! Fundamental domain of the torus \mathbb{T}^3

- 1. Take the Rauzy fractal in the contracting plane
- 2. "Suspend" each domain in the expanding direction
- 3. It tiles periodically! Fundamental domain of the torus \mathbb{T}^3

- 1. Take the Rauzy fractal in the contracting plane
- 2. "Suspend" each domain in the expanding direction
- 3. It tiles periodically! Fundamental domain of the torus \mathbb{T}^3

- 1. Take the Rauzy fractal in the contracting plane
- 2. "Suspend" each domain in the expanding direction
- 3. It tiles periodically! Fundamental domain of the torus \mathbb{T}^3

- 1. Take the Rauzy fractal in the contracting plane
- 2. "Suspend" each domain in the expanding direction
- 3. It tiles periodically! Fundamental domain of the torus \mathbb{T}^3

- 1. Take the Rauzy fractal in the contracting plane
- 2. "Suspend" each domain in the expanding direction
- 3. It tiles periodically! Fundamental domain of the torus \mathbb{T}^3

- 1. Take the Rauzy fractal in the contracting plane
- 2. "Suspend" each domain in the expanding direction
- 3. It tiles periodically! Fundamental domain of the torus \mathbb{T}^3

- 1. Take the Rauzy fractal in the contracting plane
- 2. "Suspend" each domain in the expanding direction
- 3. It tiles periodically! Fundamental domain of the torus \mathbb{T}^3

- 1. Take the Rauzy fractal in the contracting plane
- 2. "Suspend" each domain in the expanding direction
- 3. It tiles periodically! Fundamental domain of the torus \mathbb{T}^3

The tiling follows a 3D-lattice:

The tiling follows a 3D-lattice:

The tiling follows a 3D-lattice:

• Code orbits of \mathbf{M}_{σ} using partition $\mathcal{P} =$

• Code orbits of \mathbf{M}_{σ} using partition \mathcal{P} =

• We obtain the dynamical system $(\Sigma_{\mathcal{P}}, \text{shift})$ with $\Sigma_{\mathcal{P}} = \{\text{sequences avoiding } 22, 23, 31, 33\} (c.f. M_{\sigma})$

• Code orbits of \mathbf{M}_{σ} using partition \mathcal{P} =

- We obtain the dynamical system $(\Sigma_{\mathcal{P}}, \text{shift})$ with $\Sigma_{\mathcal{P}} = \{\text{sequences avoiding } 22, 23, 31, 33\} (c.f. M_{\sigma})$
- This is a subshift of finite type and we have an explicit Markov partition

• Code orbits of \mathbf{M}_{σ} using partition $\mathcal{P}=$

- We obtain the dynamical system $(\Sigma_{\mathcal{P}}, \text{shift})$ with $\Sigma_{\mathcal{P}} = \{\text{sequences avoiding } 22, 23, 31, 33\} (c.f. M_{\sigma})$
- This is a subshift of finite type and we have an explicit Markov partition
- Can be done for every Pisot substitution σ if the Pisot conjecture holds

Code orbits of \mathbf{M}_{σ} using partition $\mathcal{P} =$

- We obtain the dynamical system $(\Sigma_{\mathcal{P}}, \text{shift})$ with $\Sigma_{\mathcal{P}} = \{\text{sequences avoiding } 22, 23, 31, 33\} (c.f. M_{\sigma})$
- This is a subshift of finite type and we have an explicit Markov partition
- Can be done for every Pisot substitution σ if the Pisot conjecture holds
- Conclusion :
 - M matrix of an irreducible Pisot substitution ⇒ explicit construction [Siegel 2001, Ito-Rao 2006]
 - $\blacktriangleright\ M$ hyperbolic but not Pisot
 - \implies explicit constructions in some cases
 - (for example [Arnoux-Furukado-Harriss-Ito 2001])

• Code orbits of \mathbf{M}_{σ} using partition $\mathcal{P}=$

- We obtain the dynamical system $(\Sigma_{\mathcal{P}}, \text{shift})$ with $\Sigma_{\mathcal{P}} = \{\text{sequences avoiding } 22, 23, 31, 33\} (c.f. M_{\sigma})$
- This is a subshift of finite type and we have an explicit Markov partition
- Can be done for every Pisot substitution σ if the Pisot conjecture holds

Conclusion :

- M matrix of an irreducible Pisot substitution ⇒ explicit construction [Siegel 2001, Ito-Rao 2006]
- M hyperbolic but not Pisot
 - \implies explicit constructions in some cases
 - (for example [Arnoux-Furukado-Harriss-Ito 2001])
- Conjecture easy to check for one given substitution.

 $lacksim {\sf Code}$ orbits of ${f M}_\sigma$ using partition ${\cal P}=$

- We obtain the dynamical system $(\Sigma_{\mathcal{P}}, \text{shift})$ with $\Sigma_{\mathcal{P}} = \{\text{sequences avoiding } 22, 23, 31, 33\} (c.f. M_{\sigma})$
- This is a subshift of finite type and we have an explicit Markov partition
- Can be done for every Pisot substitution σ if the Pisot conjecture holds

Conclusion :

- M matrix of an irreducible Pisot substitution ⇒ explicit construction
 - [Siegel 2001, Ito-Rao 2006]
- $\blacktriangleright\ M$ hyperbolic but not Pisot
 - \implies explicit constructions in some cases
 - (for example [Arnoux-Furukado-Harriss-Ito 2001])
- Conjecture easy to check for **one given** substitution.
- It has also been proved for some infinite families. [Ito-Ohtsuki 1993, Berthé-Jolivet-Siegel 2011]

谢谢大家的关注。

- The Sage software, www.sagemath.org Used here to draw pictures; a free and very complete math software.
- R. L. Adler, Symbolic Dynamics and Markov Partitions, Bulletin of the AMS, 1998. For automorphisms of T².
 - Anne Siegel, HDR (online). For \mathbb{T}^d , $d \ge 3...$