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Discrete planes

Let v = (a, b, c) ∈ R3
+ not equal to (0, 0, 0).

Definition: discrete plane Pv of normal vector v

Pv = the boundary of the union of the unit cubes that intersect
the half-space defined by 〈x, v〉 < 0
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Unit faces

Every discrete plane is covered by unit faces, denoted [x, i]∗:
• position x ∈ Z3

• type i ∈ {1, 2, 3}

e1 e2

e3

[(0, 0, 0), 1]∗ [(0,−1, 1), 2]∗ [(−2, 1, 0), 3]∗

Notation: x +D : translate a union of faces D by x ∈ Z3
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Now, let’s play with lozenges. . .
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Some lozenge substitutions
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Where do these substitutions come from?

A hint:

7→ 7→

7→
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. . . these substitutions all come from:
Definition [Arnoux-Ito ’01]

E∗1(σ)([x, i]∗) =
⋃

k=1,2,3

⋃
s|σ(k)=pis

[M−1
σ (x+ `(s)), k]∗,

where:
• σ : {1, 2, 3}∗ → {1, 2, 3}∗ is a unimodular substitution
• Mσ is the incidence matrix of σ
• ` : {1, 2, 3}∗ → Z3

+ is the abelianization function

Example for σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

E∗1(σ)([x, 1]∗) = M−1
σ x + [(1, 0,−1), 1]∗ ∪ [(0, 1,−1), 2]∗ ∪ [(0, 0, 0), 3]∗

E∗1(σ)([x, 2]∗) = M−1
σ x + [(0, 0, 0), 1]∗

E∗1(σ)([x, 3]∗) = M−1
σ x + [(0, 0, 0), 2]∗

7→ 7→ 7→
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Some examples

7→ 7→ 7→ 7→ 7→

7→ 7→ 7→ 7→

7→ 7→ 7→ 7→ 7→
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Some properties of E∗1(σ)

Miracle 1: images do not overlap [Arnoux-Ito ’01]

[x, i]∗ , [x′, i′]∗ ∈ Pv =⇒ E∗1(σ)([x, i]∗) ∩E∗1(σ)([x′, i′]∗) = ∅

Miracle 2: [Arnoux-Ito ’01, Fernique ’07]
The image of a discrete plane is a discrete plane: E∗1(σ)(Pv) = PtMσv

Linearity (Arnoux-Ito ’01)
E∗1(σ)([x, i]∗) = M−1

σ x + E∗1(σ)([(0, 0, 0), i]∗)

å E∗1(σ) is characterized by:
• its action on [(0, 0, 0), 1]∗, [(0, 0, 0), 2]∗, [(0, 0, 0), 3]∗

• the incidence matrix Mσ
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Now, we want to define Rauzy fractals using E∗1(σ).

å We iterate E∗1(σ) starting from .



Lozenge substitutions Fractals Position rules Applications

Now, we want to define Rauzy fractals using E∗1(σ).
å We iterate E∗1(σ) starting from .



Lozenge substitutions Fractals Position rules Applications

Now, we want to define Rauzy fractals using E∗1(σ).
å We iterate E∗1(σ) starting from .



Lozenge substitutions Fractals Position rules Applications

Now, we want to define Rauzy fractals using E∗1(σ).
å We iterate E∗1(σ) starting from .



Lozenge substitutions Fractals Position rules Applications

Now, we want to define Rauzy fractals using E∗1(σ).
å We iterate E∗1(σ) starting from .



Lozenge substitutions Fractals Position rules Applications

Now, we want to define Rauzy fractals using E∗1(σ).
å We iterate E∗1(σ) starting from .



Lozenge substitutions Fractals Position rules Applications

Now, we want to define Rauzy fractals using E∗1(σ).
å We iterate E∗1(σ) starting from .



Lozenge substitutions Fractals Position rules Applications

Now, we want to define Rauzy fractals using E∗1(σ).
å We iterate E∗1(σ) starting from .



Lozenge substitutions Fractals Position rules Applications

Now, we want to define Rauzy fractals using E∗1(σ).
å We iterate E∗1(σ) starting from .



Lozenge substitutions Fractals Position rules Applications

Now, we want to define Rauzy fractals using E∗1(σ).
å We iterate E∗1(σ) starting from .



Lozenge substitutions Fractals Position rules Applications

The same, with renormalization

π( )
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The same, with renormalization

Mσπ(E∗1(σ)( ))
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The same, with renormalization

M2
σπ(E∗1(σ)2( ))
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The same, with renormalization

M3
σπ(E∗1(σ)3( ))
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The same, with renormalization

M4
σπ(E∗1(σ)4( ))
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The same, with renormalization

M5
σπ(E∗1(σ)5( ))



Lozenge substitutions Fractals Position rules Applications

The same, with renormalization

M6
σπ(E∗1(σ)6( ))
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The same, with renormalization

M7
σπ(E∗1(σ)7( ))
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The same, with renormalization

M∞
σ π(E∗1(σ)∞( ))
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Definition of the Rauzy fractal

Let σ : {1, 2, 3}∗ → {1, 2, 3}∗ be a Pisot irreducible substitution.

Definition [Rauzy ’82, Arnoux-Ito ’01]
The Rauzy fractal associated with σ is the set

lim
n→∞

Mn
σπ(E∗1(σ)n( )).

1 7→ 12
2 7→ 3
3 7→ 1

1 7→ 131
2 7→ 1
3 7→ 1132

1 7→ 2
2 7→ 3
3 7→ 12
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Position rules

We want to apply E∗1(σ) without computing Mσx for every face [x, i]∗.

å We need an analogue of σ(uv) = σ(u)σ(v) in higher dimensions.

Example for σ : 1 7→ 121312, 2 7→ 1312, 3 7→ 1121312

We have E∗1(σ)( ) = and E∗1(σ)( ) = .

å How to compute E∗1(σ)( ) without the formula and Mσx?

We give a position rule:

7→

This rule must agree with E∗1(σ).
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Example (continued)

Sometimes, it is possible to describe E∗1(σ) by a finite set of position rules
(when we only want to iterate from ).

This is the case for our example:

7→ 7→ 7→

7→ 7→ 7→

7→ 7→ 7→

7→ 7→ 7→



Lozenge substitutions Fractals Position rules Applications

Example (continued)
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(when we only want to iterate from ).
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Example (continued2)

Let’s apply these rules:

7→
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Example (continued3)

This is an example of a stable set of rules (we can iterate them).

å The sets we obtain are connected patches of lozenges, because they are
obtained by gluing connected patterns.

å The associated Rauzy fractal is connected, because connectedness is
compatible with the Hausdorff limit (our sets are compact).
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The same way, we can prove the connectedness of the fractal associated with:

• σ : 1 7→ 12, 2 7→ 3, 1 7→ 1 (minimal Pisot substitution):

7→ 7→ 7→

7→ 7→ 7→

• σB,C : 1 7→ 3, 2 7→ 132, 1 7→ 233 (a Jacobi-Perron substitution):

7→ 7→ 7→ 7→

7→ 7→ 7→

• Many other examples. . .
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Let’s try do deal with some families of
substitutions (not only one).
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Arnoux-Rauzy substitutions

ar1 :

{ 1 7→ 1
2 7→ 21
3 7→ 31

ar2 :

{ 1 7→ 12
2 7→ 2
3 7→ 32

ar3 :

{ 1 7→ 13
2 7→ 23
3 7→ 3
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Connectedness of Arnoux-Rauzy fractals

Let’s look at E∗1(σ)(ar1):

7→ 7→ 7→

7→ 7→ 7→

7→ 7→ 7→

7→ 7→ 7→

Idea: Consider larger starting patterns: 7−→
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Connectedness of Arnoux-Rauzy fractals

These larger patterns yield 3 sets of 12 rules (one for each ari) such that:
• the 3 sets of rules for ar1, ar2 and ar3 are mutually stable,
• the patterns in the rules are connected.

å We are allowed to compose substitutions!

Theorem (Berthé-J-Siegel)
Let σ = ari1 · · · arin be a finite product of AR substitutions. Then:
1. E∗1(σ)(ari1 ) · · ·E∗1(σ)(arin)( ) is (simply) connected
2. The fractal associated with σ is connected.
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Other applications

The same can be done for Jacobi-Perron substitutions
(σB,C : 1 7→ 3, 2 7→ 13B , 1 7→ 23C) or the Brun substitutions [already in
Ito-Ohtsuki ’93, ’94].

But, unfortunately, not elementary substitutions (a more general class than
Arnoux-Rauzy):
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Future work

• Prove the simple connectedness of Arnoux-Rauzy fractals.
• Study other continued fraction algorithm substitutions (like Brun, JP, . . . ).
• Prove the tiling property for some families (links with Pisot conjecture).
• Decidability:

• Are the generated patches (simply) connected?
• Is (0, 0, 0) on the boundary of the patches?
• . . .
• Same questions for fractals (many of them already answered,

cf. [A. Siegel and J. Thuswaldner, Topological properties of Rauzy fractals])
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