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Abstract

We prove that every free group of finite rank can be realized as the fundamental group of
a planar Rauzy fractal associated with a 4-letter unimodular cubic Pisot substitution. This
characterizes all countable fundamental groups for planar Rauzy fractals. We give an explicit
construction relying on two operations on substitutions: symbolic splittings and conjugations
by free group automorphisms.

1 Introduction
In 1982, Rauzy proved that the dynamical system generated by the Tribonacci substitution
σ(1) = 12, σ(2) = 13, σ(3) = 1 is measure theoretically conjugate to an exchange of domains
on a compact subset of the plane with fractal boundary [Rau82]. He even showed that this
dynamical system is measure theoretically conjugate to a translation on the two-dimensional
torus: in other words, it has pure discrete spectrum. These results were later generalized to
every primitive irreducible unimodular Pisot substitution satisfying combinatorial conditions
called coincidence conditions [AI01, CS01, IR06, BBK06]. The Pisot conjecture states that
such systems always have pure discrete spectrum [ABB+14].

The associated Rauzy fractals and their subdomains are compact sets equal to the closure of
their interior, and they are attractors of graph directed iterated function systems [SW02, ST09].
Besides these common properties, Rauzy fractals enjoy a great topological diversity. In the
literature, properties like connectedness, homeomorphy to a closed disc for planar Rauzy fractals
or triviality of their fundamental group are investigated. Most of these questions can be solved
algorithmically for a given substitution [ST09].

The study of Rauzy fractals and their topological properties is motivated by several appli-
cations. Examples are the numeration systems with non-integer bases (see [Thu89] and the
survey [BS05]); the computation of simultaneous Diophantine approximations [HM06]; the
theory of tiling dynamical systems [Sol97, BBK06]; the generation of discrete planes related
to multidimensional continued fraction algorithms [IO94, ABI02]; the relation with some
topological invariants of tiling spaces [BDS09]; and the search for explicit Markov partitions for
hyperbolic toral automorphisms [IO93, KV98, Adl98, Pra99].

In the planar case, there are many known examples of Rauzy fractals which are homeomorphic
to a disc, or whose fundamental group is uncountable [Mes98, Mes06, ST09, LMST13]. How-
ever, until now, no example with “intermediate” constellation is known, where the fundamental
group would be nontrivial, but countable.

In this article, we prove that such an intermediate situation occurs by giving a method to
construct explicit examples. For any given K ∈ N, we are able to construct a 4-letter primitive
unimodular cubic Pisot substitution whose Rauzy fractal has a fundamental group isomorphic
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to the free group FK of rank K (Theorem 5.2). This result is complete in the sense that every
countable fundamental group of a planar Rauzy fractal must be of this form (Proposition 2.8).

Our method relies on two symbolic operations on substitutions that induce manipulations on
the subtiles of the associated Rauzy fractals, namely symbol splittings and conjugation by free
group automorphisms. Questions about the effect of conjugation by free group automorphisms
on Rauzy fractals have already been raised in [Gäh10] and [ABHS06]. A consequence of our
work is that the fundamental group of the Rauzy fractal of a substitution σ is not preserved after
conjugation of σ by free group automorphisms.

Outline The paper is organized as follows. In Section 2, together with preliminary results, we
recall that Rauzy fractals can naturally be decomposed into subtiles and subsubtiles. We then
manipulate these tile subdivisions within the fractal in order to obtain the desired topological
properties. Our tools consist of two symbolic operations on substitutions: symbol splittings
(Section 3) and conjugation by free group automorphisms (Section 4). Our main results are
proved in Section 5. Schematically, they are obtained via the following strategy (see Figure 1):

(a) Start with a substitution σ on three symbols whose Rauzy fractal and its subtiles are
disklike.

(b) Take n large enough such that the subtiles of σn consist of sufficiently small subsubtiles for
the next two steps to be applicable (Proposition 5.1).

(c) Split a symbol to isolate a subsubtile and turn it into a subtile of the Rauzy fractal of a
new substitution τ on four symbols (Proposition 3.2).

(d) Conjugate τ by a suitable free group automorphism ρ. The Rauzy fractal associated with
ρ−1τρ now has a hole (Proposition 4.1).

(a) Subtiles of σ (b) Subsubtiles of σ3

(c) Subtiles after splitting a sym-
bol in σ3

(d) Subtiles after conjugating by
a free group automorphism

Figure 1: The main steps of our strategy.

Note that the subtiles in Figure 1 (d) do not overlap (see Theorem 5.2). The fractals in
Figure 1 (c) and 1 (d) have different areas, this is explained in Remark 2.2.
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2 Preliminaries
In the following, A denotes a finite set of symbols, and A? denotes the free monoid over A
defined as the set of all finite words over A, where the composition of two words u and v is their
concatenation uv. If w is an element of A? or AN, its i-th letter is denoted by wi.

2.1 Substitutions

Let A be a finite set of symbols. A substitution is a non-erasing morphism of the free monoid A?,
i.e., a function σ : A? → A? such that σ(uv) = σ(u)σ(v) for all words u, v ∈ A?, and such that
σ(a) is nonempty for every a ∈ A.

We denote by P : A? → Zn the Abelianization map defined by P(w) = (|w|1, . . . , |w|n),
where |w|i denotes the number of occurrences of i in w. The incidence matrix Mσ of σ is the
matrix of size n× n whose i-th column is equal to P(σ(i)) for every i ∈ A. A substitution σ is

• unimodular if det(Mσ) = ±1;
• primitive if Mσ is primitive (all the entries of Mn

σ are strictly positive for some n > 1);
• Pisot if the dominant eigenvalue of Mσ is a Pisot number: an algebraic integer β > 1
whose Galois conjugates β1, . . . , βd satisfy |βi| < 1;
• irreducible if the algebraic degree d of the dominant eigenvalue β of Mσ is equal to the
size of the alphabet of σ.

An infinite word u ∈ AN is a periodic point of σ if there exists k ∈ N such that σk(u) = u.
Such a periodic point always exists when σ is primitive [Que10, Proposition 5.1].

2.2 Rauzy fractals and subtiles

Before defining Rauzy fractals we introduce the necessary algebraic setup. Let σ be a primitive
unimodular Pisot substitution on the alphabet A = {1, . . . , n}, and let β be the Pisot the
dominant real eigenvalue of Mσ, a Pisot number of degree d. Denote by β1, . . . , βr the r real
conjugates of β, and denote by βr+1, βr+1, . . . , βr+s, βr+s the 2s complex conjugates of β (we
have r+ 2s = d− 1). Let vβ be a left eigenvector of Mσ associated with β. Let πσ the projection
given by

πσ : Rn → Rr × Cs ∼= Rd−1

ei 7→ (〈vβ1 , ei〉, . . . , 〈vβr+s , ei〉)

where each eigenvector vβj is obtained by replacing β by βj in the coordinates of vβ . Note that
the conjugates βr+1, . . . , βr+s are not taken into account in the definition of πσ.

Definition 2.1. Let σ be a primitive unimodular Pisot substitution on the alphabet A and let u
be a periodic point of σ. The Rauzy fractal of σ (with respect to vβ) is the set Tσ =

⋃
i∈A Tσ(i),

where for each i ∈ {1, . . . , n}, Tσ(i) is the subtile of type i given by

Tσ(i) = {πσP(u1 . . . um) : m ∈ N and um+1 = i}.

Remark 2.2. In the above definition, the norm of vβ does affect the area of the sets Tσ and
Tσ(i) up to an inflation factor. Standard definitions of Rauzy fractals usually require ‖vβ‖1 = 1.
In this article, we will not put any restriction on the norm of vβ , always specifying with respect
to which vβ we define a Rauzy fractal. This will help us to avoid many technical difficulties when
relating different Rauzy fractals (living in different representation spaces) in Proposition 3.2 and
Proposition 4.1.
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2.3 Subsubtiles and graph-directed iterated function system

In the definitions below we will need the mapping hσ : Rr × Cs → Rr × Cs, defined by
hσ(x) = diag(β1, . . . , βr+s)x. The mapping hσ is contracting on Rr × Cs because |βi| < 1 for
1 6 i 6 r + s. It corresponds to the action of Mσ before projecting by πσ, in other words,
πσMσ = hσπσ.

In Definition 2.1, we have given a decomposition of the tile Tσ into its subtiles Tσ(i). In
Sections 3 and 4 we will need to decompose Rauzy fractals one step further: each subtile Tσ(i)
can be decomposed into its subsubtiles Tσ(i, j; k), defined below in Definition 2.3.

Intuitively, each subsubtile of Tσ(i) corresponds to an occurrence of i in the words σ(j).
We formalize the notion of occurrence before defining subsubtiles. A pair (j, k) ∈ A × N is
an occurrence of the symbol i in σ if σ(j)k = i, that is if the k-th letter of σ(j) is i. We
will denote occurrences by (j; k) to emphasize the fact that j is an element of A and k is an
index. The set of occurrences of i in σ is denoted by occ(σ, i). For example, for σ : 1 7→
11213, 2 7→ 331, 3 7→ 1 we have occ(σ, 1) = {(1; 1), (1; 2), (1; 4), (2; 3), (3; 1)}, occ(σ, 2) = {(1; 3)}
and occ(σ, 3) = {(1; 5), (2; 1), (2; 2)}.

Definition 2.3. Let (j; k) ∈ occ(σ, i). The subsubtile Tσ(i, j; k) is defined by

Tσ(i, j; k) = hσ(Tσ(j)) + πσP(σ(j)1 · · ·σ(j)k−1).

Note that Tσ(i, j; k) is defined only if (j; k) ∈ occ(σ, i). The tiles Tσ(i) are the solution of
a graph-directed iterated function system, which can be conveniently expressed in terms of
subsubtiles and symbol occurrences in the following theorem.

Proposition 2.4 ([SW02, EIR06]). Let σ be primitive unimodular Pisot substitution on the
alphabet A. For every i ∈ A we have

Tσ(i) =
⋃

(j;k)∈occ(σ,i)
Tσ(i, j; k),

and this union is measure-disjoint.

The proof for the measure-disjointness is given in [SW02] for the irreducible case and
in [EIR06] for the reducible case. We also refer to [AI01, BS05, ST09, BR10].

Example 2.5. Let σ : 1 7→ 21, 2 7→ 31, 3 7→ 1. The subsubtiles of σ3 : 1 7→ 1213121, 2 7→
213121, 3 7→ 3121 are plotted in Figure 1 (b). The 9 subsubtiles of Tσ3(1) = Tσ(1) correspond to
the 9 occurrences of 1 in σ3; the 5 subsubtiles of Tσ3(2) correspond to the 5 occurrences of 2 in
σ3; the 3 subsubtiles of Tσ3(3) correspond to the 3 occurrences of 3 in σ3.

Remark 2.6. According to see [AI01], the subtiles Tσ(i), i ∈ A, are measure-disjoint if σ
satisfies the strong coincidence condition: for every (j1, j2) ∈ A2, there exists k ∈ N and
i ∈ A such that σk(j1) = p1is1 and σk(j2) = p2is2 with P(p1) = P(p2) or P(s1) = P(s2).

Remark 2.7. We mention that for N > 1 and i ∈ A we have Tσ(i) = TσN (i). Moreover, iterating
the above equation, we obtain for all N > 1 and for every i ∈ A we have

Tσ(i) =
⋃

(j;k)∈occ(σN ,i)
TσN (i, j; k).

2.4 Countable fundamental groups of Rauzy fractals are free

We now prove that free groups of finite rank are the only possible countable fundamental groups
of Rauzy fractals. Let us recall the following basic notions and results from topology [WD79]. A
topological space X is a continuum if it is compact and connected. It is locally connected if
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it has a base of connected sets. A path from x to y in X is a continuous function f : [0, 1]→ X
with f(x) = 0 and f(y) = 1. X is path-connected if every two points of X are joined by
a path, and locally path-connected if it has a base of path-connected sets. It follows from
the theorem of Hahn-Mazurkiewicz that any locally connected continuum is path-connected.
Moreover, in a metric space, every locally connected continuum is locally path-connected by
results of Mazurkiewicz, Moore and Menger (see [Kur68, Section 50, Chapter II, p. 254]).

Proposition 2.8. Let σ be a primitive unimodular Pisot substitution and let Tσ be its Rauzy
fractal. Suppose that Tσ and its subtiles are planar locally connected continua. If the fundamental
group of Tσ is countable, then it is isomorphic to the free group FK on K generators for some
finite rank K.

Proof. The result follows directly from a theorem of Conner and Lamoreaux [CL05, Theorem 3.1],
which states that if a planar set is connected and locally path-connected, then its fundamental
group is not free if and only if it is uncountable. Note that this result can also be proved using a
theorem of Shelah [She88].

3 Symbol splittings
We now define a symbolic operation, symbol splitting, that we will use in Proposition 3.2.

Definition 3.1. Let σ be a substitution on the alphabet A, let a ∈ A, let b /∈ A be a new symbol
and let I ⊆ occ(σ, a) be a nonempty set of occurrences of a in σ. The splitting of symbol a to
the new symbol b with occurrences I is the substitution τ defined by

τ(i) =
{
the word σ(i) in which σ(i)k is replaced by b for every (i; k) ∈ I, if i 6= b,
τ(a), if i = b.

See Example 3.3 for an example of symbol splitting. Note that if σ is a primitive unimodular
Pisot substitution, then so also is any splitting τ arising from σ (Lemma 3.4). Moreover, we
have χτ (x) = x · χσ(x), where χσ and χτ are the characteristic polynomials of Mσ and Mτ ,
respectively. The action of symbol splittings on the Rauzy fractal of a substitution σ is described
in the next proposition, and is illustrated in Example 3.3.

Proposition 3.2. Let

• σ be a primitive unimodular Pisot substitution on the alphabet A = {1, . . . , n},
• τ be obtained by splitting of σ from symbol a to a new symbol b = n+ 1 with occurrences
I ⊆ occ(σ, a),
• vβ = (v1, . . . , vn) ∈ Rn be a left eigenvector of Mσ associated with β,
• wβ = (v1, . . . , vn, va) ∈ Rn+1 (which is a left eigenvector of Mτ associated with β, see
Lemma 3.4),
• Tσ be the Rauzy fractal of σ (with respect to the eigenvector vβ),
• Tτ be the Rauzy fractal of τ (with respect to the eigenvector wβ).

We have

(1) Tτ (i) = Tσ(i) if i /∈ {a, b},

(2) Tτ (a) =
⋃

(j;k)∈occ(σ,a)\I
Tσ(a, j; k),

(3) Tτ (b) =
⋃

(j;k)∈I
Tσ(a, j; k).
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Example 3.3. Let σ : 1 7→ 1213121, 2 7→ 213121, 3 7→ 3121. We split the symbol a = 1 to the
new symbol b = 4 with occurrences I = {(1; 1), (2; 6), (3; 2)} of 1 in σ. The resulting substitution
τ and its Rauzy fractal are shown below. (The tiles associated with 4 are shown in black.)

τ :


1 7→ 4213121
2 7→ 213124
3 7→ 3421
4 7→ 4213121

In order to prove Proposition 3.2 we need Lemma 3.4 and Lemma 3.5 below.

Lemma 3.4. Under the hypotheses of Proposition 3.2, β is an eigenvalue of Mτ and wβ a left
eigenvector of Mτ associated with β. Hence, the Rauzy fractal Tτ mentioned in the statement of
Proposition 3.2 is well-defined.

Proof. By definition of symbol splittings we have

• (Mτ )i,j = (Mσ)i,j for all i /∈ {a, n+ 1} and j 6= n+ 1,
• (Mτ )n+1,j = (Mσ)a,j for all j /∈ {a, n+ 1},
• (Mτ )i,a + (Mτ )i,n+1 = (Mσ)i,a for all i 6= n+ 1.

Hence, by definition of wβ we have (wβMτ )i = (vβMσ)i if i 6= n+1 and (wβMτ )n+1 = (vβMσ)a,
so wβMτ = βwβ, which proves the lemma.

Lemma 3.5. Under the hypotheses of Proposition 3.2, let i ∈ {1, . . . , n, b = n+ 1} and (j; k) ∈
occ(τ, i), and let i′ = a if i = b and i′ = i otherwise. We have Tτ (i, j; k) = Tσ(i′, j; k) if j /∈ {a, b},
and Tτ (i, a; k) ∪ Tτ (i, b; k) = Tσ(i′, a; k).

Proof. First, note that hσ = hτ by definition, they are both equal to diag(β1, . . . , βr+s) (recall
that χτ (x) = x · χσ(x), see Section 2.3). Also, by Lemma 3.4, for j = 1, . . . , r + s, βj is an
eigenvalue and wβj is a left eigenvector of Mτ associated with βj , where wβj is obtained by
replacing β by βj in the coordinates of wβ. It follows that πτP(i) = πσP(i) for all i 6= b and
πτP(b) = πσP(a). We will use these facts later in the proof.

Next, we claim that Tτ (i) = Tσ(i) if i /∈ {a, b} and Tτ (a) ∪ Tτ (b) = Tσ(a). Indeed, let u be a
periodic point of τ , and let u′ be defined by u′m = a if um = b and u′m = um otherwise. Then it
is easy to check that u′ is a periodic point of σ, and that πτP(u1 · · ·um) = πσP(u′1 · · ·u′m) for all
m > 1, so our claim follows from Definition 2.1 of Rauzy fractals. Finally, we have

Tτ (i, j; k) = hτTτ (j) + πτP(τ(j)1 · · · τ(j)k−1)
= hσTσ(j) + πσP(σ(j)1 · · ·σ(j)k−1)
= Tσ(i′, j; k) for j /∈ {a, b},

and

Tτ (i, a; k) ∪ Tτ (i, b; k) = hτ (Tτ (a) ∪ Tτ (b)) + πτP(τ(a)1 · · · τ(a)k−1)
= hτTσ(a) + πτP(τ(a)1 · · · τ(a)k−1)
= hσTσ(a) + πσP(σ(a)1 · · ·σ(a)k−1)
= Tσ(i′, a; k),

which proves the lemma.
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Proof of Proposition 3.2. Let (j; k) ∈ occ(τ, i), and let i′ = a if i = b and i′ = i otherwise. We
have

Tτ (i) =
⋃

(j;k)∈occ(τ,i)
Tτ (i, j; k) by Proposition 2.4

=
⋃

(j;k)∈occ(τ,i)
j /∈{a,b}

Tτ (i, j; k) ∪
⋃

(a;k)∈occ(τ,i)
Tτ (i, a; k) ∪

⋃
(b;k)∈occ(τ,i)

Tτ (i, b; k)

=
⋃

(j;k)∈occ(τ,i)
j /∈{a,b}

Tτ (i, j; k) ∪
⋃

(a;k)∈occ(τ,i)
Tτ (i, a; k) ∪ Tτ (i, b; k)

=
⋃

(j;k)∈occ(τ,i)
j /∈{a,b}

Tσ(i′, j; k) ∪
⋃

(a;k)∈occ(τ,i)
Tσ(i′, a; k) by Lemma 3.5

=
⋃

(j;k)∈occ(τ,i)
j 6=b

Tσ(i′, j; k).

The third line of the above equation follows from the second line because (a; k) ∈ occ(τ, i) if
and only if (b; k) ∈ occ(τ, i), by definition of symbol splittings. Statements (1), (2), (3) of
Proposition 3.2 can now be proved by combining the above equality and the fact that the
condition “(j; k) ∈ occ(τ, i) and j 6= b” is equivalent to

• (j; k) ∈ occ(σ, i) if i /∈ {a, b}, which proves (1);
• (j; k) ∈ occ(σ, a) \ I if i = a, which proves (2);
• (j; k) ∈ I if i = b, which proves (3).

Note that Statement (1) of Proposition 3.2 was already established in the proof of Lemma 3.5.

4 Conjugation by free group automorphisms
In this section we describe the action of a particular family of free group automorphisms on the
Rauzy fractal of a substitution in Proposition 4.1, which will be used to prove our main result,
Theorem 5.2.

A free group morphism on the alphabet A is a non-erasing morphism of the free group
generated by A, consisting of the finite words made of symbols a and a−1 for a ∈ A. Substitutions
can be seen as a particular case of free group automorphisms, where no “−1” appears in the image
of each letter. The inverse of a free group automorphism ρ is the unique morphism (denoted by
ρ−1) such that ρρ−1 = ρ−1ρ is the identity. For example, the inverse of ρ : 1 7→ 1, 2 7→ 211, is
ρ−1 : 1 7→ 1, 2 7→ 21−11−1.

The fundamental operation we will perform on a substitution σ is conjugation by a free
group automorphism ρ, i.e., forming the product ρ−1σρ where ρ is an automorphism. In
the specific cases that we will consider, σ and ρ−1σρ will always both be substitutions (i.e.,
contain no “−1”). We will use a particular family of free group automorphisms, consisting of the
mappings ρij given by (together with their inverses)

ρij(k) =
{
ij if k = j

k if k 6= j,
ρ−1
ij (k) =

{
i−1j if k = j

k if k 6= j.

The next proposition describes how a Rauzy fractal is affected when its associated substitution is
conjugated by a free group automorphism ρij . Example 4.2 and Example 4.3 provide examples
of conjugacy of free groups, and their actions on Rauzy fractals when combined with symbol
splittings.
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Proposition 4.1. Let
• τ be a primitive unimodular Pisot substitution on the alphabet A,
• b ∈ A be such that there exists a unique c ∈ A such that for every (j; k) ∈ occ(τ, b), we
have k > 2 and τ(j)k−1 = c,
• θ = ρ−1

cb τρcb,
• wβ ∈ Rn+1 be a left eigenvector of Mτ associated with β,
• zβ = wβMρcb ∈ Rn+1 (which is a left eigenvector of Mθ associated with β),
• Tτ be the Rauzy fractal of τ (with respect to eigenvector wβ),
• Tθ be the Rauzy fractal of θ (with respect to eigenvector zβ).

We have
(1) Tθ(i) = Tτ (i) if i /∈ {b, c},
(2) Tθ(b) ∪ Tθ(c) = Tτ (c).

More precisely,
(3) Tθ(b) =

⋃
(j;k)∈occ(τ,b)

Tτ (c, j; k − 1) = Tτ (b)− πτP(c),

(4) Tθ(c) =
⋃

(j;k)∈occ(τ,c)
(j;k+1)/∈occ(τ,b)

Tτ (c, j; k).

In particular, Tθ =
⋃
i 6=b Tτ (i).

Proof. We first check that zβ is a left eigenvector of Mθ associated with β:

zβMθ = wβMρcbMθ = wβMρcbM
−1
ρcb

MτMρcb = wβMτMρcb = βwβMρcb = βzβ.

Hence, the Rauzy fractal Tθ mentioned in the statement of the Proposition is well-defined. We
now prove Statements (1) and (2). Let u be a periodic point of θ (i.e., there exists k > 1 such
that θk(u) = u), and let v = ρcb(u). It is easy to check that v is a periodic point of τ :

τk(ρcb(u)) = (ρcbθρ
−1
cb )kρcb(u) = ρcbθ

kρ−1
cb ρcb(u) = ρcbθ

k(u) = ρcb(u).

Let ` : N→ N be the unique function defined by induction as follows for m > 2:

`(1) =
{

1 if u1 6= b

2 if u1 = b,
`(m) =

{
`(m− 1) + 1 if um 6= b

`(m− 1) + 2 if um = b.

In particular, we have um = v`(m) for all m ∈ N. The definition of ` is illustrated below, on an
example where u3 = v4 = b, v3 = c and u1, u2, u4, v1, v2, v5 /∈ {b, c}.

u = u1 u2 u3 = b u4 · · ·
ρcb(u) = v = v1 v2 v3 = c v4 = b v5 · · ·

= v`(1) v`(2) v`(2)+1 v`(3) v`(4) · · ·

The equality zβ = wβMρcb implies that 〈zβ, ei〉 = 〈wβ, ei〉 if i 6= b and 〈zβ, eb〉 = 〈wβ, ec〉+
〈wβ, eb〉. Hence, by definition of πτ and πθ we have πθP(i) = πτP(i) if i 6= b and πθP(b) =
πτP(c) + πτP(b). It follows that for all m ∈ N,

πθP(u1 · · ·um) =
∑

16k6m
uk 6=b

πθP(uk) +
∑

16k6m
uk=b

πθP(b)

=
∑

16k6m
uk 6=b

πτP(v`(k)) +
∑

16k6m
uk=b

(πτP(c) + πτP(b))

=
∑

16k6m
uk 6=b

πτP(v`(k)) +
∑

16k6m
uk=b

πτP(v`(k)−1v`(k))

= πτP(v`(1) · · · v`(m)).
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It is easy to verify that for all i /∈ {b, c}, ` is a bijection between {m ∈ N : um+1 = i} and
{m ∈ N : vm+1 = i}, so

Tθ(i) = {πθP(u1 · · ·um) : um+1 = i}
= {πτP(v1 · · · v`(m)) : v`(m)+1 = i}
= Tτ (i).

Moreover, ` is also a bijection between {m ∈ N : um+1 = b or c} and {m ∈ N : vm+1 = c}, so

Tθ(b) ∪ Tθ(c) = {πθP(u1 · · ·um) : um+1 = b or c}
= {πτP(v1 · · · v`(m)) : v`(m)+1 = c}
= Tτ (c).

Therefore, Statements (1) and (2) are proved. For the second equality of Statement (3), we
compute

Tθ(b) + πθP(c) = {πθP(u1 · · ·um) + πθP(c) : um+1 = b}
= {πτP(v1 · · · v`(m)c) : v`(m)+2 = b}
= Tτ (b).

We used here that m 7→ `(m) + 1 is a bijection between the sets {m ∈ N : um+1 = b} and
{m ∈ N : vm+1 = b}. We now prove the first equality of Statement (3) (giving a precise
description of the subsubtile decomposition of Tθ(b)). Note that

θ(i) =
{
the word τ(i) in which each occurrence of cb is replaced by b, if i 6= b

the word τ(cb) = τ(c)τ(b) in which each occurrence of cb is replaced by b, if i = b.

We apply Proposition 2.4, and use the fact that hθ = hτ as well as the above correspondence
between the occurrences of b in θ and in τ :

Tθ(b) =
⋃

(j;k)∈occ(θ,b)
hθTθ(j) + πθP(θ(j)1 · · · θ(j)k−1)

=
⋃

(j;k′)∈occ(τ,b),j 6=b,c
hτTτ (j) + πτP(τ(j)1 · · · τ(j)k′−2)

∪
⋃

(c;k′)∈occ(τ,b)
hθTθ(c) + πτP(τ(c)1 · · · τ(c)k′−2) (∗)

∪
⋃

(c;k′)∈occ(τ,b)
hθTθ(b) + πτP(τ(c)1 · · · τ(c)k′−2) (∗∗)

∪
⋃

(b;k′)∈occ(τ,b)
hθTθ(b) + πτP(τ(c)τ(b)1 · · · τ(b)k′−2). (∗∗∗)

Recall that Tθ(b) ∪ Tθ(c) = Tτ (c), hence, hθ(Tθ(b) ∪ Tθ(c)) = hτTτ (c), which allows us
to combine (∗) and (∗∗) into a single union. Since πτP(τ(c)) = hτπτP(c) = hθπθP(c) and
Tθ(b) + πθP(c) = Tτ (b), we can write in (∗∗∗) that

hθTθ(b) + πτP(τ(c)τ(b)1 · · · τ(b)k′−2) = hτTτ (b) + πτP(τ(b)1 · · · τ(b)k′−2).

Therefore, Statement (3) follows from

Tθ(b) =
⋃

(j;k′)∈occ(τ,b)
hτTτ (j) + πτP(τ(j)1 · · · τ(j)k′−2) =

⋃
(j;k′)∈occ(τ,b)

Tτ (c, j; k′ − 1).

Statement (4) can be proved via a similar computation for Tθ(c).
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Example 4.2. Let σ : 1 7→ 21, 2 7→ 31, 3 7→ 1. First we split σ3 : 1 7→ 1213121, 2 7→ 213121, 3 7→
3121 from a = 1 to b = 4 with occurrences I = {(1; 7)} to obtain τ : 1 7→ 1213124, 2 7→
213121, 3 7→ 3121, 4 7→ 1213124. Then we conjugate τ with ρ24 : 1 7→ 1, 2 7→ 2, 3 7→ 3, 4 7→ 24:

ρ−1
24 τρ24 :


1 7→ 1 7→ 1213124 7→ 121314
2 7→ 2 7→ 213121 7→ 213121
3 7→ 3 7→ 3121 7→ 3121
4 7→ 24 7→ 2131211213124 7→ 213121121314

The effect of these operations on the Rauzy fractals are shown in Figure 1: the subtiles of Tσ are
shown in (a), the subsubtiles of Tσ3 are shown in (b), the subtiles of Tτ are shown in (c) and the
subtiles of Tθ are shown in (d).

Example 4.3. Let σ : 1 7→ 21, 2 7→ 31, 3 7→ 1. Let τ be the splitting of σ6 from 1 to 4 with
occurrences I = {(1; 24); (1; 31); (1; 33); (1; 40)}. (Note that σ(1)p−1 = 2 for all (1, p) ∈ I.) Let
θ = ρ−1

24 τρ24 with ρ24 : 1 7→ 1, 2 7→ 2, 3 7→ 3, 4 7→ 24. The effect of these operations on the Rauzy
fractal are shown in Figure 2.

Figure 2: Rauzy fractals of the substitutions defined in Example 4.3. The subsubtiles of Tσ6

(left), the subtiles of Tτ (center), and the subtiles of Tθ (right).

5 Main results
We now combine the results of Section 3 (symbol splittings) and Section 4 (conjugations by
free group automorphisms) in order to prove our main result, Theorem 5.2. First, we prove in
Proposition 5.1 that it is possible to “dig holes” in a “nice” planar Rauzy fractal by extracting
some subsubtiles.

Proposition 5.1. Let σ be a primitive unimodular Pisot substitution on the alphabet A with
dominant Pisot eigenvalue of degree 3, such that Tσ and its subtiles Tσ(i) (i ∈ A) are home-
omorphic to a closed disc. Let K > 1. Then there exist two letters a 6= c ∈ A and N > 1
and

I ⊂ {(j; k) ∈ occ(σN , a) : σN (j)k−1 = c}︸ ︷︷ ︸
=: ON

⊂ occ(σN , a)

such that the sets

Tσ(a) \
⋃

(j;k)∈I
TσN (a, j; k) =

⋃
(j;k)∈occ(σN ,a)\I

TσN (a, j; k)

and
Tσ \

⋃
(j;k)∈I

TσN (a, j; k)

are homeomorphic to a closed disc minus the union of K disjoint open discs of its interior. Here,
M denotes the closure of a set M .
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Proof. Let a 6= c ∈ A such that the word ca occurs in a power of σ, i.e., such that σn0(j0)k0 = a
and σn0(j0)k0−1 = c for some j0 ∈ A and n0, k0 > 1. We will dig holes in the subsub-
tile Tσn0 (a, j0; k0) ⊂ Tσ(a). Let x1, . . . , xK be K points in the interior of Tσn0 (a, j0; k0) and
B1, . . . , BK ⊂ Tσn0 (a, j0; k0) be K disjoint closed discs such that for each m ∈ {1, . . . ,K}, Bm is
centered at xm. We can assume that B1, . . . , BK all have the same radius r > 0 and that their
boundaries do not intersect the boundary of Tσn0 (a, j0; k0).

We can choose N such that all the subsubtiles of σN have diameter less than r/2, because
each subsubtile of σN is a copy of a subsubtile of σ which is scaled down by hNσ , and hσ is
a contraction. Thanks to Proposition 2.4 and Remark 2.7, we can further choose a set of K
occurrences I := {(j1; k1), . . . , (jp; kp)} ⊂ occ(σN , a) such that for every m ∈ {1, . . . ,K}, we
have xm ∈ TσN (a, jm; km). Each subsubtile TσN (a, jm; km) has diameter less than r/2, thus it is
contained in Bm. In particular, the subsubtiles TσN (a, j1; k1), . . . , TσN (a, jK ; kK) are all disjoint
and contained in Tσn0 (a, j0; k0).

We claim that I ⊂ ON . Indeed, by assumption, there exist a prefix p ∈ A∗ and a suffix
s ∈ A∗ satisfying σn0(j0) = pas, |p| = k0 − 1 and pk0−1 = c. Moreover, it follows from
the inclusion TσN (a, jm; km) ⊂ Tσn0 (a, j0; k0) that there exist p′m, s′m ∈ A∗ with the property
that σN (jm) = σn0(p′m) pas σn0(s′m) and |σn0(p′)p| = km − 1. Thus σN (jm)km−1 = c and
(jm; km) ∈ ON , for each m ∈ {1, . . . ,K}.

Each subsubtile TσN (a, jm; km) is a set which is homeomorphic to a disc and which is contained
in Bm. Therefore, by Schönflies’ theorem [Tho92], the closure of Tσ \

⋃
(j;k)∈I TσN (a, j; k) is

homeomorphic to a disc from which K open discs with disjoint boundaries have been removed.
The same property holds for

Tσ(a) \
⋃

(j;k)∈I
TσN (a, j; k) =

⋃
(j;k)∈occ(σN ,a)\I

TσN (a, j; k)

(note that the union on the right side is measure-disjoint by Proposition 2.4).

We are now able to prove our main result.

Theorem 5.2. Let K > 1 be an integer and denote by FK the free group of rank K. Then:

(1) There exists a 4-letter primitive unimodular Pisot substitution τ such that the fundamental
group of a subtile Tτ (a) of the Rauzy fractal Tτ is isomorphic to FK , and such that the
subtiles of Tτ have disjoint interiors.

(2) There exists a 4-letter primitive unimodular Pisot substitution θ such that the fundamental
group of the Rauzy fractal Tθ is isomorphic to FK and such that the subtiles of Tθ have
disjoint interiors.

Proof. Let σ be any primitive unimodular substitution on the alphabet {1, 2, 3} whose dominant
eigenvalue is a cubic Pisot number, and such that Tσ and its subtiles are homeomorphic to a disc
and have disjoint interiors. We also require σ to satisfy the strong coincidence condition
(see Remark 2.6). One of the many possible choices for σ is the Tribonacci substitution
1 7→ 12, 2 7→ 13, 3 7→ 1, for which the above properties can easily be verified [ST09, BR10].

Let a 6= c ∈ A, N > 1 and

I ⊂ {(j; k) ∈ occ(σN , a) : σN (j)k−1 = c}︸ ︷︷ ︸
=: ON

⊂ occ(σN , a)

as given in Proposition 5.1. Then
⋃

(j;k)∈occ(σN ,a)\I TσN (a, j; k) is homeomorphic to a closed disc
minus the union of K disjoint open discs. Thus the fundamental group of this set is isomorphic
to FK . Let τ be the substitution obtained from σN by splitting a to a new symbol b with
occurrences I. By Proposition 3.2 we have Tτ (a) =

⋃
(j;k)∈occ(σN ,a)\I TσN (a, j; k), so Tτ (a) is

isomorphic to FK .
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The subtiles of Tτ are measure-disjoint. Indeed, σN is a primitive unimodular Pisot sub-
stitution, thus for each i ∈ A, the subsubtiles of TσN (i) are measure-disjoint for each i ∈ A
(see Proposition 2.4). Moreover, we chose σ satisfying the strong coincidence condition, so the
subtiles Tσ(i) = TσN (i) (i ∈ A) of TσN are also measure-disjoint (see Remark 2.6). Therefore,
Proposition 3.2 implies that the subtiles of Tτ are measure-disjoint and Statement (1) is proved.

To prove Statement (2), we make use of the specific choice I ⊂ ON for the set of occurrences.
Indeed, a conjugation will have the effect of moving the subsubtiles associated with I from the tile
associated with b into another tile, hence leaving K holes in the fractal. We apply Proposition 4.1
to τ , which is a primitive unimodular Pisot substitution on the alphabet A′ := A ∪ {b}, and to
θ = ρ−1

cb τρcb. The assumption on the occurrences of b is fulfilled because I ⊂ ON . Remember
that Proposition 3.2 also asserted that Tτ (i) = TσN (i) if i /∈ {a, b}. It follows that

Tθ =
⋃
i 6=b
Tτ (i) =

⋃
i 6=a,b
Tτ (i) ∪ Tτ (a)

=
⋃
i 6=a,b
TσN (i)

︸ ︷︷ ︸⋃
i 6=a TσN (i)

∪
⋃

(j;k)∈occ(σN ,a)\I
TσN (a, j; k)

= Tσ \
⋃

(j;k)∈I
TσN (a, j; k)

and its fundamental group is isomorphic to FK by Proposition 5.1.
Finally, as all subtiles Tτ (i) and there subsubtiles are measure-disjoint, we can infer from

Proposition 4.1 that the subtiles of Tθ are also measure-disjoint.

6 Conclusion
Our results are obtained with a fixed number of symbols (4) so there is no bound of the number
of holes by the number of symbols, which answers a question asked to the authors by Minervino.
It is not known whether there exists a 3-letter Pisot substitution with nontrivial but countable
fundamental group.

In further developments, we may try to realize higher homology/homotopy groups for three-
dimensional Rauzy fractals associated with Pisot numbers of degree > 4. Indeed, illustrations
of Figure 3 lead to think that our methods could be adapted to higher dimensions, since
Propositions 3.2 and 4.1 do not assume planarity of the tiles. However this is out of reach for the
moment, because we need the essential preliminary fact that the subtiles are homeomorphic to a
ball, but appropriate criteria in 3-dimensions do not currently exist. A reason is that the theorem
of Schönflies used in Proposition 5.1 does not generalize to higher dimensions. Developments in
this direction have recently been obtained by Conner and Thuswaldner [CT14].

Another perspective for further work is to describe some uncountable fundamental groups for
some simple examples, such as the fractal shown in Figure 4. This has successfully been done for
some fractals such as the Hawaiian earring or the Sierpiński triangle [CC00, ADTW09].
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Figure 3: Drilling holes in the “Quadribonacci” substitution σ : 1 7→ 21, 2 7→ 31, 3 7→ 41, 4 7→ 1.
We have splitted the occurrences {(1, 8), (2, 7)} of 1 to a new symbol 5 in σ3, and conjugated the
result by ρ2,5 to obtain the substitution θ : 1 7→ 4121315, 2 7→ 121315, 3 7→ 213121, 4 7→ 3121, 5 7→
1213154121315. The Rauzy fractals of σ and θ are plotted above left and right, respectively.
These fractals are three-dimensional because the associated Pisot eigenvalue is of degree 4.

Figure 4: The Rauzy fractals of 1 7→ 2413, 2 7→ 43, 3 7→ 2433, 4 7→ 1 (left) and 1 7→ 2, 2 7→
4, 3, 3 7→ 4, 4 7→ 53, 5 7→ 6, 6 7→ 1 (right). The first picture suggests that one of the subtiles is
homeomorphic to a disc from which infinitely discs have been removed, which would make it
homeomorphic to the Hawaiian earring.
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