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Tiling the plane with one tile
D. Girault-Beauquier and M. Nivat

LITP Université Paris VI et VII

1 Introduction

Tiling the plane is a very old activity cf mankind. In the book of B. Grunbaum and G.C. Shephard,
Tilings and patterns [3], one can find many beautiful examples of decorative tilings belonging to nearly al:
ancient civilizations. Most decorative tilings are those we call periodic, this meaning that they are invariant
by twe independant translations.

Among periodic tilings some are called below regular: if the tiling uses just one tile and tranlated
instances of itself, the tiling is said to be regular if and only if the surrounding of each instance of the tile
in the tiling is the same. Grunbaum and Shephard [3] give to regularity a completely different meaning (the
tilings which are shown on page 34 of their book are not regular in their sense but clearly regular in our
sense). ;
From our definitions it follows that a periodic tiling U by a finite number of different tiles induces a
regular tiling with just one tile T: this means that there exists a tile T exactly covered by. a finite ;:umber
of instances of the given tiles such that U contains a regular tiling by 7. This can be shown in the following
example. The well known and widely used tiling with one regular octogon and one square contains the
regular tiling by one tile exactly covered by one octogon and one adjacent square.
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Fig. 1.1

We call below ezact a tile such that there exists at least one tiling of the plane by translated instances
of this tile. And our paper is devoted to the characterization of exact tiles.

We first investigated exact polyominoes (a polyomino being a polygon exactly covered by unit squares -

whose edges are horizontal and vertical). We refined a recent result of J.van Leeuvi;en and H.A.G.WijsholT
[10] about exact polyominoes. We proved that a polyomino is exact if and only if it is a pscudo-hezagon,
and that every tiling with an exact polyomino is half-periodic (i.e. invariant by some translation). From
the result of Jan van Leeuven and Wijshoff follows that it is decidable whether a polyomino is exact and
this was their aim when studying skewing schemes and data transfer functions in various types of parallel
processing machines. The purely geometrical properties of exact polyominoes do not appear in their work.
On the contrary we focused on these properties and this lead us to extend the results on polyomiroes to the
widest possible family of tiles i.e. all the subsets of the plane which are iomeomorphic to a closed disk and
whose boundary is piecewise C?, with a finite number of inflexion points (we do need be able to define the
length of the boundary). All the results remain true, namely the fact that a tile is exact if and only if it
admits a surrounding by translated images of itself (the number of which can be proved to be at least 4 and
at most &), this being equivalent to saying that the tile is a pseudo-hexagon (which can be degenerated).
Such an exact tile and a tiling of the plane by this tile are shown below.
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Fig. 19

The fact that the exact tile shown aboye is a pseudo-hexagon is shown by the following figure:

Biro

Fig. 1.3

[

The translation AB’ maps the edge [4B] onto the edge [B’A’], the translation BC' maps the ec}ge [B

onto the edge [C'B’] and the translation C 4 maps the edge [C'A’] onto the edge [AC].

Furthermore the two fol lowing results hold:

-there exists a tiling with one (exact) tile if and only if there exists a regular tiling

-all tilings by an exact tile are half-periodic.

A conclusion of this work is that Hao Wang’s conjecture (8] holds for just one tile. Hao Wang conjectur
that for all finite set of tiles there exists a tiling if and only if there exists a periodic one and this conjectu
was proved to be false by exhibiting sets of tiles such that the set of tilings is not empty but does not conta
a periodic one. Such sets have been exhibited in that order by R.Berger(2], M.Robinson [7] and R. Penrc
(6], the last one being the simplest. In fact all these authors allow rotations of the tile but their results c:
be easily converted into results for tiles which are only translated (the number of possible rotations for the
tiles is finite). Penrose’s set of tiles (kites and darts) is equivalent to a set of tranlated tiles containing :
elements. And thus the problem is still open to decide whether there exists a tiling of the plane for a Zive
set of tiles containing a small nuber of elements (between two an twenty). We may guess that the proble:
is decidable for two and formulate the conjecture: \

-there exists a tiling with two tiles if and only if there exists an exact tile which is exactly covered by
bounded number of instances of each tile (the bound depending on the lengths of the two tiles) .

2 Preliminaries

The tiles we deal with are homeomorphic to a closed disk. Their boundary is a curve, oriented ir
the clockwise sense (which will be named the positive or direct sense), and we assume (it is a reasonable
assumption after all) that this boundary is piecewise 2 and that each component arc of class C* admits
a finite number of inflexion points. One consequence of this hypothesis is that the boundary has a lengtls.
Let ¢ be a tile. Two points 4 and B on the boundary of ¢ define an oriented Jordan arc which is the path

the translation of vector u wiil be denoted by g(u), and q(u) is called an instance of 7. The boundary of a
tile ¢ is denoted by b(g) and its length is 16(g)]. If A belongs to the boundary of q, we denote by A’ the
"symmetric” point of A on this boundary, i.e. the point such that A4 = |[474])) = ib(a)} /2 (it implies
that (4’) = A). Two instances 7(u) and q(v) are said to be

o netghbouring if q(u) N q(v) is a nonempty set with an empty interior
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o simply neighbouring if q(u) and q(v) are neighbouring and g(u) Nq(v) 1s a connected set
e adjacent if q(u) and ¢(v) are simply neighbouring and q(u) N ¢(v) is not reduced to a point.

@i aas

neighbouring but not simply neighbouring but not adiacent
simply neighbouring adjacent & z
Fig. 2.1

A tiling of the plane P by the tile q can be represented as a set U of vectors such that P = U q(u) and
uell

for two distinct vectors u and v of U, q(u) and g(v) are not overlapping i.e. are disjoint or neighbouring.

We will focus on some objects that will play an important role later on, namely the edges of a tiling.
The edges of a tiling are the common boundaries between two simply neighbouring tiles. We have to give a
precise definition of this notion. Let q(u) and g(v) be two simply neighbouring tiles; let us suppose that A
and B are the extremities of the arc q(u) Ng(v) such that [BA] is the directly oriented arc on q(u) and [AB]
is the directly oriented arc on q(v) (Fig-2.2 a)

Al-v) B(-v}
q q(u)
b A B
Aepd au a®

(a) (b)

Fig. 2.2

We denote by [q(u), g(v)] the edge of g(u) related to g(v), that is the arc [BA] referred to the reference
tile g, so it is the arc [B(—u)A(—u)] of g. We define in the same way [9(v), ¢(u)] = [A(—=v) B(=v)]. And, by
abuse of notation, if [¢(x),q(v)] = [CD] and [¢(v), g(u)] = [EF], we will represent these edges on q(u) and
q(v) as shown in Fig.2.2.b

A tile ¢ is ezact if it can tile the plane. A tiling U of the plane with an exact tile ¢ is said to be
e periodic if there exist two independent vectors u and vsuch that U=U+u=0U+v
o regular if there exist two independent vectors u and v and a vector ug such that
U =up+ {ku+ Ku/k k' € Z}
o half-periodic if there exists a vector u # 0 such that

U=U+u

(Fig.2.3)



Fig. 2.3 Examples

Surroundings

Let g be a tile. A surrounding of q is a circular sequence (g(ug), -3 q(1x _1)) of instances of ¢ such th:
feri—m r 1, ¢ and q(u;) are simply neighbouring q(u;) and q{uiy,) are simply neighbouring (indic
are defined modulo k) and if [g, q(u;)] = [A: B;], then Aiy1 = B;.

The surrounding is said to be complete if for each i, 7(u;) and q(u;4;) are adjacent, minimal if for eq.
b g, a(ua)ll > 0 (Fig2.4). ¢

a complete surrounding

3 mimmal surraunding

Fig. 2.4

Let us observe that the concatenation of arcs [4: B:] provides the boundary b(q). We now give some
results established in [10] for polyominoes but they hold for our tiles as well (only the fact that the tilo is
a closed topological disk is needed; but the proof is a little more ’sophistic'ated’). The proof is exactly the
same for the first two lemmas replacing ”a cel]” by ”an interior point”.

Lemma 2.1 — If the tiles q and q(u) don’t overlap then g, 2(u), ¢(2u) don’t overlap each other.(Fig 2.5)

q q(u) q(2u

I

L

Fig. 2.5

Lemma 2.2, — Let q, q(u), q(v) three instances of q, pairwise neighbouring. Then, q, q(u), i(v), q(u - v),
7(—u), 9(-v), g(v — u) don't overlap each other. (Fig 2.6)
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Fig. 2.6

Lemma 2.3.— Let q be a tile q with boundary b(q). Suppose there are two or three neighbouring mstances
of g that form a hole h (homeomorphic to a closed disk) (Fig.2.7). Then the size of the interior boundary I
of these instances with respect to h is strictly less than 15(q)|-

£
h
]

1

Fig. 2.7

Proof — We give only the proof for two neighbouring instances of g because the modification of the proof
of [10] is the same for two or for three tiles.

Suppose that g(u) and ¢(v) are neighbouring, and form a hole k. Let S be the set of edges belonging to
the boundary of the hole A or both to g(u) and g(v). These edges have positive or null length. Let I(/) be
the length of the boundary I of h and I(S) the sum of the lengths of the edges in S. Of course, I(I) < I(5).
We want to prove that two edges of S correspond to not overlapping arcs on the boundary of p. By this we
mean that if [A(x)B(w)] and [C(v)D(v)] are two edges of S (possibly the same edge) then [AB]n[CD] is
empty or reduced to a point (in other way these arcs are not overlapping).

First of all, if [A(u)B(u)] and [C(v)D(v)] are the same edge of S then [AB] and [CD] are disjoined on
the boundary of ¢: actually, [DC] = [AB](v—u), and if [AB] and [DC] overlap along an arc [M N] then the
interior of ¢ would be both on the left and on the right of [MN]; if [AB] and [DC] have a common extremity
then we would have B = C = B(v —u) or A= D = A(v — u). So, [AB] and [DC] are disjoined. So we can
suppose that [A(u)B(u)] and [C(v)D(v)] are distinct edges of S. Let go = q(u) 11 = ¢(v) g2 = q(2v — u).
Because of lemma 2.1 qg, ¢:, g2 do not overlap each other. The relative position of qp and q; is the same that
g1 and g2. So we can extend both go and g¢; to ¢j and g} in such a way that q) covers exactly go and the
hole h and ¢} covers g and the corresponding hole (see figure 2.7.1)-
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Fig. 2.7.1

Then again ¢}, q},q> do not overlap each other. Suppose that [A(u)B(u)], [C(v)D(v)] are elements

of S such that [AB] and [CD] are overlapping. Let [MN] an arc of strictly positive length included in

[AB]N [CD]. If [A(u)B(u)] and [C(v)D(v)] are both parts of go and ¢ then q4 and g border ¢ along the
same arc [M(v)N(v)], which is a contradiction with the fact that ¢, and g2 do not overlap. The two other
possibilities lead to the same kind of arguments.

Now if go and q; have a common edge of strictly positive length the proof is achieved because we have:

I(1) < I(S) < Ib(a)]

It remains the case where go and ¢; have no common edge of strictly positive length.

Fig. 2.7.2

In that case I(I) = I(S). But in that case S contains only two edges of strictly positive length (figure
2.7.2) : [A(v)B(u)] and [C{v)D(v)] where A(u) = D(v) and B(u) = C(v).But [AB] and [DC] are disjoined
(for the same reason that above) and I(I) < |b(g)]- u

Lemma 2.4— Given a tile ¢ with boundary b(q). Let E be the exterior boundary of the union of any
nonempty collection of instances of q which do not overlap each other and form no hole. Then |E] = [6(q)].

Proof — Here again we have to refine the proof of [10]. Let C = (g(u1), ..., g(ux)) a not empty finite collection
of instances of q which do not overlap each other and the union has no hole. We subdivise the boundary of
g in a finite number of arcs in the following way: let ¢ be the convex hull of ¢. There exists a finite sequence
ay, @a, ..., an of points of b(q) N b(c) such that the neighbouring of «; in b(q) is different of the neighbouring
of a; in b(c) (Figure 2.8) (this is a consequence of the assumption we did concerning the tiles we deal with).
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Fig. 2.8

If [a;aiy1] is an arc of b(q) N b(c) we insert between a; and ;41 a large enough number of points
@i, = aj,.., 0, = oy in such a way that if 8 and v are two consecutive points in this sequence, and if
there exists an ;nteger j such that [B(u;)y(u;)] overlaps an edge between q(u;) and another instance of g,
q(u}), then [B(u;)y(u;)] is entirely contained in this edge. This is possible because the number of edges is
ﬁmte We still call the new sequence (ay, ..., &n).

Now we want to prove (and it is sufficient to prove that I(E) > I(b(q)) that for every i there exists j )
such that [ajai+1)(u;) is included in E. Let s = [a;aiy1]. We define a straight line [ in the following way:

[

Case 1 If s is an arc of ¢ then ! is a perpendicular line to the line § = (a;i41)

Case 2 If s is not an arc of ¢ then ! is a perpendicular line to the line § cutting s in a single point m (sisa
convex curve so it is possible).

The lines § and [ are orlented in such a way that g is on the left of 6 and teh measure of the angle (1, )
is +7/2. Now we project all the arcs s(u;),...,5(un) on [ (orientated as on the figure). Let p the rightmost
point of these projections; p belongs to the pro_]ectlon of an arc s(uko} Suppose that s(ug,) ¢ E. There
exists q(uy) such that b(g(ux) N s(uk,) # 0.

Case 1 Then c(u;) whose area is strictly larger than the area of c(ug,) — q(uk,) has to stick out of c(ur,) —
q(ux,) and s(ui) has a projection beyond p, it contradicts the fact that p is the rightmost point on .

Case 2 Then b(q(uz)) D s(ux, ), and again c(u;) lies beyond the line §(ug,) and it is also a contradiction.
; |

3 Combinatorics and curves

- We consider the set Cg of oriented curves which are a finite union of geometric arcs of class C? [1](some
parts of the curve can be "multiple” arcs). We can define in Cg a product (partially defined) which is a
natural operation: if a and b are curves such that the extremity of a is the origin of b then ab is the curve
obtained as the "union” of a and b. Its origin is the origin of a and its extremity is the one of b. Clearly ab
belongs to Cp.

If we define in Cg the relation a ~ b if there exists a translation ¢ such that #(a) = b, then, clearly the
above defined product is compatible with this equivalence relation and induces a product in the quotient set
C = Cp/ ~ which has in this way a monoid structure. If @ and g are two classes, the product «f is the
equivalence class of the product of an element a of & with an element b of 3 such that the extremity of a is

equal to the origin of b (Fig.3.1). =
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Fig. 3.1
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This monoid C has combinatoria] Properties which look like the combinatorial Properties. of words
some alphabet; we wi]] now establish them. 2

Fig. 3.9

Let « be a curve. The mirror tmage of  is the curve obtained by changing the orientation of a. The
origin of « is the extremity of & and conversely.

Let o = gv6. Then v s a factorof o, it is a left factorif B =1 and a right factorif 6 = .
Lemma 3.1 — If o is a factor of B for a curve 0 of arbitrary small length, then o is 4 line segment.

which has an arbitrary smal] period is a constant one. L]
Lemma 32—.Ifaf = Y@ there erists a curye 8 = 6185 and 4 conjugate §, = 826, such that o € 676y,
BE6F and v ¢ 5.

Proof —
¢ If le| < |7, we have:

Fi—a )

and
8=

a B
¥ ]
A
Fig.

So the result is broved, if we write: § — al and 6. = \q
* If o] > |y] we have:

a = vty
with 1 a strict left factor of 4.
o B
. 8
.v———__.__.__—————_____.
Fig.
So the equality a8 = Y@ becomes
N8 =1 with 1l < ]
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Then § and 7 are conjugate and we have

y=my2, B=71 enda €7 n-

Lemma 3.3.— If @ and 3 are nonempty curves satisfying the equation
o =49 p,g>0
then there exists a curve vy such that o, € y*.

Proof —
If |o| = |f| thenp=gand a = =17.

Assume that |a| > |8].
Then a = ¥4, with |61] < |B.
If B, = 1, the proof is achieved. _
Otherwise, 8, is a left factor and a right factor of . In the same way, we can write:
o = P20 with |B2] < |].
And f, is also a left and a right factor of a.
But |82| = |81]. So B2 = B1, and the following equality holds:
prB* = p"
By lemma 3.2, 8; and 8% are power of a same curve 7.
And a = £18F € 4.
Now we have an equation
77 =B and |y| < |8 , 1 >p-

We iterate the process. If it does not stop, that means that a” is a power of infinite number of curves, so by

lemma 3.1, o? is a line segment, and the result is proved in all the cases. =
Lemma 3.4.— If aff = Ba then a and B are both powers of some curve 7y, or af} is a line segment.
Proof —

Ifa=1or f=1Iitis clear (if we put a® = 1).
Let us suppose & and  # 1.

If || = |B] then @ = B = 7. Let us suppose |a| > |B]. Then a = B%B, = fif* and 0 < [B2] < |Bu]. If
|81] = 0. the result is proved. In the other case, we iterate the process for 8; and B. We have 8,8 = 0.
So, B = B¥ B, with 0 < |B2| < |B1]. We can observe that |B2| < 1/2 |B8]. If the process does not stop, the

sequence || is converging to zero, so af3 satisfies the hypothesis of lemma 3.1 and we get the result. m
Lemma 3.5— If @ and B are primitive curves such that ot and Bt have a common element y of length
greater than or equal to |a| + |B|, then o = S.

Proof —

Let v a curve such that v = o = B9, with |y| > |e| + |B|. Suppose that |a] > |Bl,then 1 < p < gq.
So we have a = B*B; with 0 < |81] < |B| because « is a primitive curve. Let us write B = £.8>. But, 5
is a left and right factor of 8 and also (> because o? is a left factor of 7. So, 182 = P21 and there is a
contradiction with lemma 3.4. m



Lemma 3.6.-— Let o be a primitive curve. If a conjugate 3 of o has two different writings 3 = 317, = 314
such that o = P23 = B4 then
B =1 and ] = B or viceversa

Proof —
The equality 8281 = 3,0] implies 31825185 = 15855155

Whence (8102)(6152) = (8152)(6153)-

By lemma 3.4, there exists v such that 8105 and 3{35 belong to v*. In the same way:
B1B28182 = B 8281 B2 = 318581 B2 so (8152)(B152) = (B182)(515=)-

So we have:8,02 = 8,85 = 7. :

And B{B., 185 € v*. But one of the two curves 3{f> or 8135 has a length strictly less than ¥ because

By # By so B1fB2 = 1 or B85 = 1. And the result is proved. =

4. Tilings

Qur purpose is to characterize the exact tiles by a simple property, and to describe all the tilings we
can obtain with an exact tile. '

First of all we can observe that the following properties hold:
Lemma 4.1.— i :

Let q be an ezact tile and U a tiling by q. Then two instances q(u), q(v) (u,v € U) are disjoint or simply
netghbouring.

Proof . —
If two instances are neighbouring but not simply neighbouring their union form a hole and by lemma
2.3 and 2.4 they cannot belong to a tiling of the plane. "

Lemma 4.2.—
Let U be a tiling of the plane by an exact tile q. If q(u) 1s an insiance of q in lhe tiling, every surrounding
of q(u) with tiles of U has at least four tiles.

Proof . — It is an iminediate consequence of lemma 2.3 and 2.4. n

Triads and contacts.— :

A triad is a triple (g(u),q(v),q(w)) of tiles which are two by two simply neighbouring and
lg(u),q(v)] , [g(u), g(w)] are consecutive curves on the boundary of q(u) in this order, and moreover, the
union of the three tiles has no hole. This implies the existence of a unique common point to the three tiles.

If we have :
l[g(u),q(v)] = [A14], [2(v).q(w)] = [B1B], [g(w)q(u)] = [C1C]

then (A, B,C) will be called the contact of the triad (g(u), ¢(v), g(w)).
(Fig.4.1 q(u) = p, q(v) =q, q(w) =)
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We can observe that if (p,¢,r) is a triad with contact (A, B, C), then (q,7,p) and (r,p, ¢) are also triads
with respective contacts (B,C, A) and (C, A4, B).

(a) (c)

A contact is said to be ezactif there is at least one tiling of the plane by the corresponding tile, in which
this contact appears. In Figure 4.1, (a) and (c) but not (b) are exact contacts.

We will give now a characterization of exact tiles.
Theorem 4.2.— A tile ¢ 15 ezact if and only if it admils a surrounding.

Proof — Clearly, if U is a tiling of the plane by a tile g, then if q(u) is a tile of U, the set of tiles of U which
intersect g(u) are simply neighbouring to g(u) (Lemma 4.1) and form a surrounding of ¢(u) when correctly

ordered according to their common edge with g(u).

Conversely, let us suppose that (g(ug),...,q(ux—1)) is a surrounding of g. Because of lemma 4.2, & is
greater than or equal to four. Let us write: -

ei = [q,q(u;)] and e} = [g(u;), ¢(ui41)] (indices are defined modulo k).

Using ‘translations one has:

[Q, é(ﬂi)] = [Q(Us'), Q(QH.')] = [q(ﬂi+1.f1(u£ i Ue+1)] =cr

9, ¢(uit1)] = [9(ws), q(ui + wig1)] = [g(uit1), 2(2uig1)] = eiya

la(u:), q(uir1)] = [9(2us), q(wi + wig1)] = [q(us + wig1), a(2uis1)] = €}

We have represented in Figure 4.2 the tiles q, q(u;), q(u,-_;,l} g(uim1), qui-1 + i), q(2w), q(u; + wiyy),
q(2u;4,) and their common edges.




The triads (g, ¢(u), q(wip1), (q(us), 9(2us), q(wi + tig1), (q(igr), q(wi + uit1), q(2ui41)) are translated
one of the other. So their contacts are the same.

But it is not sure that (g(uis+1), q(wi), 7(wi + uis1)) is a triad. Actually the tiles, of course, are two by
two simply neighbouring, but perhaps the union has a hole A as in Figure 4.2.

Let us write r; (resp. si,t;) to denote the common edge of q(u;) (resp. q(ui + uit1), A(ti+1)) with h. Let
us observe that if |r;| = 0 then |s;| = [ti| = 0, otherwise g(u; + uit1) and q(uis1) would not be simply
neighbouring. More generally, if one of these three curves is of length zero, so are the others. Now let us
compute the length of the boundary of ¢, looking at the tile g(u;) (resp. q(ui + uip1)). We have:

lb(a)] = [6(a(w)l = [Bi_y] + ltioal + il + (Bl 4 [bisal + |ril + [83] + 1bi]

If we sum these equalities for i = 0 to k — 1, we obtain:

Elo@l =2 > 1B +4d bl + D lul+ D Iml (1)

On the other hand, computing the length of b(q) looking at q(u; + ui41) (Figure 4.2), we obtain:

b(g)| = [B:] + Isi] 4+ [bia] + B3] + ltc] + [6il + [biga| + |ri] + 16]
And also

Eb(@)l =43 1ol + 23 i+ 3 lsal+ 3 Il + D Insl - (2)

Comparing (1) and (2), one has

Y lsil=0

So for each 7, |s;| = |t:| = |ri] = 0, and the hole 4 is reduced to a point. So (q(uis1), q(ui), q(ui + iz1))
is a triad for each i. Moreover

(Q’(U{ = U£+1),Q(Ui), q(uig1), ¢(uip1 — u_:‘)s q(—u;), q(—ui+1)) (3)

is a surrounding of ¢ (because of lemma 2.2).

This surrounding has the property it can be translated so the set U = {nu; + n'u;y1/n,n" € Z} is a
regular tiling of the plane.

So the proof is achieved and it contains some more properties we state below. =
Corollary 4.3.— If a tile q is ezact, there ezisis a regular tiling of the piane by q.

Corollary 4.4.— Every surrounding of a tile can be extended into a tiling of the plane, and every contacl
appearing in a surrounding is an exact one.

Proof — Keeping the notations of the proof of Theorem 4.2, the set U = {ku;+k'uip1/i =0,..., k=1, n,n’ >
0} is a tiling of the plane. a
We can now give another characterization of exact tiles which is a consequence of (3).

Lemma 4.5— Let (p,q,7) be an ezract iriad (that is a triad appearing in a tiling of the plane) with contact
(4,B,C). Then we have
i) :
pal = [B'A], [g,7] = ['B], 5} = [AC]

[¢,p] = [BAT], [r,q] = [CB'), [p,7] = [AC]
(We recall that A’ represents the symmelric point of A on the boundary of the tile)
it)Moreover, if we write g = p(w), = p(v), then (p(w),p(v),p(v — u),p(—u), p(—),p(u — v)) is a
surrounding of p.(Figure 4.3)
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Corollary 4.6.— If [p,q] = [AB] is an edge in a tiling U then [q,p] = [A’B'].

Let ¢ be a tile , and A, B two points of its boundary. From now, the equivalence class in C = Co/ ~ of

the curve [AB] will be denoted by < [AB] >

Definition 4.7.— A tile ¢ is a pseudo- hezagon ABAA'B'C' if there exist three points A, B and C on the

boundary of ¢ such that B € [AC] and < [A’B’] >=< [AB] > < [B'C'] >=< [BC] > < [C’"A] >=< [CA] >.
This is equivalent to saying that there exists a point A of the boundary of g such that the equivalence

class of the boundary of g considered as a Jordan curve starting and ending at A can be written as afyagy

(Figure 4.4).

Fig. 4.4

The previous result can be stated in a new way.
Theorem 4.8.— A tile ¢ 1s exact if and only if it is a pseudo-hezagon.
Proof — The "only if” part is proved by using Lemma 4.5. Conversely, suppose q is a pseudo-hexagon

ABCA'B'C’. Let u = AG v=DBA Then (q(u), g(v), ¢(v — u), ¢(—u), ¢(—v),g(u — v)) is a surrounding of ¢
and so ¢ is an exact tile. : L]
As an immediate consequence of Lemma 4.5, one has

Proposition 4.9.— If(A, B,C) is an ezact contact for the lile ¢ then q is a pseudo-hezagon (B’AC'BA'C)
and (A',B',C") is also an ezact contact.

In Theorem 4.8 we give an ”if and only if” condition for a tile to be an exact one. The question arising
now is the effectiveness of this condition. Actually this condition is decidable for a large class of tiles. Let us
consider a tile as defined by two real functions f and g such that z = f(s) and y = g(s) are the parametric
equations of the boundary (where s is the curvilinear abscissa of the boundary);let us denote the tile by
q(f,g9). Then we have :

Theorem 4.10.— Let P be the class of real functions of a real variable which are piecewise polynomiai
functions. Let q(f,g) be a tile such that f and g belong to P. Then the exaciness of q is decidable.

Proof — Let [ the length of g. Then f and g are defined on the segment [0,{]. There exists a sequence
(s1 =0,..,sn =) such that f and g are polynomial functions in each segment [s;, siy1]. So, there exists a
finite number of choices for three numbers a, b, ¢ in [0,1/2] if we consider only the choice of the segments

13



(si, si41 in which the numbers are located. Given this choice, one can decide whether M(a)M ()M (c)M(a+
MG +1/2)M(c+1/2)1s a pseudo-hexagon for some value of a, b, c. u

We have proved that if a tile g1s exact there exists a regular tiling of the plane by q. But, a stronger

property can be proved. Actually, every tiling by an exact tile is half-periodic. That is the aim of the next
part. ;

5 Half-periodicity

In this part, ¢ is an exact tile.
We first establish a main lemma which is quite important for the proof of half-periodicity.

Lemma 5.1.— If(A,C,B’) and (A, D, B') are two different ezact contacts (C £ D) such that C' € [BD]
and (B # C or A' # D) then one of the following properties is satisfied:
i) there ezists a primitive curve o = Q102 € C and a conjugate a, = 020x] of a such that

< [BA] >€aat, <[B'A]>€ at 3
<[cD)>eat, <[C'D]>€ at

< [BC]>€ o, <[B'C]>E€ ala” = azal

< [DA’] >Ee Ct'_:-a‘, < [D’A] S>E oo

!

I
3l

(Figure 5.1)

or
i)[BA'] is a line segment. (Figurg.5.2) o
; 1
a : :
o, i
0‘2
(@4
c
oy
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{(a+ Proof — Let < [BC] >=a <[CD]>=b <[DA] >=c.

]
Then < [C4] >== [EBl=< [DA] =—he
31’15: One has < [C'4] >= < [EE'] S (b"?) = 2b.
ne
On the other hand
Z [Cdl>=< [’ PP Al >=x [C"D) >~= [DA'] > =< [C'D'] > ¢
Let. < [C'D'] >=d (d # 1). We get the equation
&b = dé
BD]
By lemma 3.2, there exists a = ajas € C and a conjugate a, = aza of a such that

f€a'ay, bea}, deat. (4)
On the other hand
< [BD] >=< [BC] >< [CD] >= ab and < [B'D’] >= < [BD) > = ba
but also < [B'D] >=< [B'C’] >< [C'D'] >=a< [C'D'] > .
So ba = ad.
Hence there exists a curve o/ = ajab € C and a conjugate o = aja’ such that
beo't Geatah=che'" andd €'t (5)

If o is a line segment, so is &’ and ii) holds.

If @ and o are not line segments, we can suppose in (4) and (5) that a is a primitive curve and also o’.
So @ = o’ by lemma 3.6. And consequently a. = o’. So by lemma 3.7 it implies that &, = o} and az = a5,
or.oy—=oh=1or as =af = 1.

In the three cases, one has:

< [BA'] >=< [BC] >< [CA] >€ dhazatdia” = Gat

In the same way we have: < [B’A] >€ a.at.
So the result i) is proved (changing @ in a.) and can be explicited by the foliowing scheme obtained by

an "unfolding” of the boundary of ¢ (Figure 5.3).

oot Ole~0ic~+
Oc o—+
. u T e G
A B c D A o D' A’
Fig. 5.3

We complete this result by the following obvious remark:
Lemma 5.2— If (4, B,B’) is an ezact contact, then we have < [AB] >= < [A’B] > and < [BA'] >=
< [B'A] > (Figure 5.4) and (A, A’, B’) is elso an ezact coniact.

15



Fig. 5.4

Definition 5.3.— A tile q is a pseudo-parallelogram ABA’'B’ if there are two points A, B on the boudary
of q such that B € [AA4'] and either
i) < [AB] >=< [A’B’] > and there is a curve « and a conjugate a, such that < [BA’] >€ aa™’ and

< [B'A] >€ azad (the tile will be called a pseudo-parallelogram of type 1 or :
n) = [ABl >—=< [A"B’] > and < [BA'] >= < [B’A] > (the tile will be called a pseudo-parallelogram of
type 2) (Figure 5.5)

type 1 type 2 type 1 and 2
Fig. 5.5

One can observe that a pseudo-parallelogram is a special kind of exact tile, and that a pseudo—
parallelogram may have types 1 and 2.
Lemma 5.3.1.— If a tile q is a pseudo-parallelogram ABA’B’ and also a pseudo- pam!feio]mm ACA'C”
then Bi= €. 2
Proof — Let us write: < [AB] >=u, < [BC] >= v and < [CA’] >= w. Suppose that |[[AB]] < |[[AC]l.
There exist two curves wy and v, such that vw = wyv; and |v| = |vy].

Since ce g is a pseudo-parallelogram ABA’B’ and also ACA’C’, the following equalities hold:

AC] > =< [A'C'] >. So, #& = @v;. -And also, < [BA’] > =< [B'A] >. So, wi = v w.

Usmg lemma 3.2 and lemma 3.6, we ‘obtain:

there exists a curve ¥ = ¥;72 such that u € y*v1, v € (ya11)*, v1 € 7+ and w € (v2711)"72. Now we
have uvw € y¥¥. So uvwuv®w admits a strict factor which is a closed curve, so there is a contradiction. ¥

Lemma 5.1 and 5.2 have a corollary.
Corollary 5.3.2.— If (A,C, B) and (A, D, B’) are two different contacts then q is a pscudo-parallelogram
and conversely.

We give now four technical lemmas about pseudo-parallelograms which will be needed later. The first
three lemma deal with pseudo-parallelograms of type 1.
Lemma 5.4.1.— Let ABA’'B’ be a pseudo-parallelogram named p, of type 1, and let U be a tiling of the
plane by p. Let r,q,s three instances of p in the tiling such that

[r.ql=[CA"], Ce(BA]

Mﬂ=wﬁLDewﬂLb¢3
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C # D and [[B'C > |of
where a is a curve such that < [BA'] >€ aat (Figure 5.6).
Under these hypothesis, the tile T(.{ﬁ) belongs to the tiling

idary
and
.m of
Fig. 5.6
Proof — Let t be the tile adjacent to r in the surrounding of ¢ (before r) in the tiling U. If ¢ # r(ﬁ)
then the contact of the triad {t,r,q) is (X, A’,C’) with X # B. There are two cases to examine according
to X € [AB] or X € [BC].
do-
J'Cf
ik :
_ Fig. 5.6.a
First case : (Figure 5.6.a) X € [BC]
The tile p admits two different contacts (C’, X, A’) and (C’, B, A’), and B € [AX]. So, we apply
lemma 5.1 (B # A). If ii) holds then < [AC] > is a line segment with factor «, so < [AA'] > is a line
e segment, it is impossible. So, i) holds. There exists a primitive curve § and a conjugate 3. such that
8 < [AC] >€ BBT and < [BX] >€ B}. So we obtain the scheme below:
m Be Act
s @
B’ X & A
he ‘

Fig. 5.6.al

But let us recall that [[BC]| > |a|. If |8] > || then 8, which is a left factor of < [BX] > has all his
factors of length |a| which are conjugate curves of @. So the curve of length 2 |a| centered in A’ is a closed
g curve because its eq_uivalence class is @, and it cannot be a factor of the boundary of p.

17



If |a| > |B| the argument is symetric.
Second case (Figure 5.6.b) X € [AB]

Fig. 5.6b

This case is less easy than the previous one. Let us observe that X # A otherwise r and { would be no
longer adjacent. So there exists an instance ¢ adjacent to s in the surrounding of ¢ (after s). Let (Y, A’, D')
be the contact of the triad (¢, ¢,s). But Y is distinct of B so there are two distinct contacts (D',Y,A’) and
(D', B, A"), with D # B. If ii) of lemma 5.1 holds < [AD] > is a line segment, so also a because |[[BC]| > |a|
and it is impossible because [AA] is not a segment line. It implies that < [AD] >€ yv* (7 is primitive). So
we have (assuming D € [BC)):

Fig. 5.6.b1

Let ¥ = 172 and 7c = 7271. Then [< [AY] >| > || and |< [BD] >| > [72]-

So |< [AD] >| > b1l + 181+ b2l = I71+ 18] But < [AD] >€ F(y7+)NF(BB*), so (lemma 3.5) = 7.
It implies < [DC] >€ #*. Now,|< [BC] >| 2 |B] and |< [BC] >| 2 o

With the same kind of argument that in the first case, we conclude there exists a strict factor of the
boundary of p which is a closed curve: the curve of length 2 inf(|8|,|a|) centered in A’. If we suppose
C € [BD], permuting C and D gives the result. _ .
Lemma 5.4.2.— Let ABA’B’ be a pseudo-parallelogram of type 1 and U a tiling of the plane by p. Letr, g
and s three instances of p in the liling such that

[r,q]=[BC'], Ce[BA], C# A, C#B
l¢,s]=[DA’], De[BA], C# D

Then the tile q( AB') belongs to the tiling U.(Figure 5.7.1)
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Fig. 5.7.1

Proof.— Let us assume that the tile adjacent to = in the surrounding of q (before r) is not g(AB’), but a
tile ¢ such that the contact (t,r,q) is (X, C, B’) with X # A (Figure 5.7.2). Necessarily X’ € [A’B], so
X € [AB].

be no
1, D)
) and
2 o]
). So
Fig. 5.7.2
So, there exists a tile ¢’ adjacent to ¢ (before ¢) in the surrounding of q witk a contact (¥, B X)) for
the triad (¢',1,q). We cannot have Y = C”’ because Y’ € [A'X']. So we have the following inequalities about
exact contacts:
(B',A,C) # (B', X,C) and C' # A
s (X",Y,B)# (X',C'",B) and C # B
We apply lemma 5.1 at these two inequalities. In both cases, ii) cannot hold because it implies [BB’]
the Is a line segment.
Yose
. -
TG ac
ATy N Q__/C AF Yo s B C A
aa+
Fig. 5.7.2a

In the same way, we can prove that we cannot have property i) for an inequality and ii) for the other.
So, property 1) holds for the two inequalities, and we have the following scheme:
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Fig. 5.7

Then by an argument we have already used, we observe that the curve centered in B with length
2inf(]8|,|v]) is closed and it is impossible. The proof is achieved. LI

Lemma 5.4.3.— Let ABA'B’ be a pseudo-parallelogram of type 1 and U a tiling of the plane by p. Letr q
and s three instances of p in the tiling such that

[r,ql =[CA"], C € [BA

and |[BC]| is greater than or equal {o the upperbound of the lengths of the edges of the tiling. Then
r(m) belongs to the tiling U. (Figure 5.7.3).

Fig. 5.7.3

Proof — The proof is similar to the one of lemma 5.4.1. But the hypothesis about |[BC]! implies that the
tile ¢ cannot satisfy the hypothesis of the second case (X € [AB]) because in that case, the edge [XC] = [t,q]
would have a length larger than the upperbound, so ¢ satisfies the hypothesis of case one (.Y € (BC]) and it
provides a contradiction (without using the tile s). ]

Lemma 5.4.4— Let ABA'B’ be a pseudo-parallelogram of type 1, and U a tiling such that U contains the
biinfinite band B = {q(kzg:)/k € Z}. Then U is invariant in the translation of vector AB’.

Proof.— Let r a tile adjacent to ¢ in the surrounding of q(wﬁ) (before q) (Figure 5.7.4) such that the

contact of the triad (r,q, q(—ﬁ)) is(X, B, A’). Then, by lemma 4.5 [r,q] = [B'X], [r, q(—ﬁ)} = [X A].
So every tile of U which is adjacent to B has an edge with B of type [B’A] on one side and [AB’] on the

other side (symetrically). That proves that all the tiles r(kAB’) belong to U. So U/ is a union of bands

translated of B. And, so U is invariant by the translation of vector AB5’. = o

20
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trq Fig. 5.74

Lemma 5.4.5.— Let ABA'B’ be a pseudo-parallelogram p where [BA'] is a line segment. If a tiling U
contains two adjacent instances of p q and r such that

[g,7] = [CA"], C€[BA')and C # B

(Figure 5.7.5a)
hen then q(AB' belongs to the tiling or there ezists a primitive curve ¥ = 7172 and a conjugate Y. = 1271
(11,72 # 1) such that < [AC] >€ vyt and < [BC] >= 2.

(a) (b)

Fig. 5.7.5

Proof — Let s be the tile adjacent to 7 and neighbouring of ¢ (before ¢) in U. Let (C', X, A’) the contact

he of the triad (r,s,q). If X # B the lemma 5.1 can be applied, so if ii) holds then [AC] is a line segment, and

q] it is impossible. Whence 1) holds: there is aprimitive curve v = 7172 and a conjugate y. = 727 of 7 such
it that < [AC] > belongs to v7* and < [X B] > (or < [BX] > it depends on the place of X) belongs to 7.
E If X € [BC] then [AC] is a line segment,,it is impossible.
b If X € [AB] then we have necessarily
< [AX] >€v"11 < [XB]>€ (y2m)* end < [BC] >= 72.
1c So the result is proved. n
1. Theorem 5.5.— If p is an ezact tile, every tiling of the plane by p is half-periodic.
le Proof.— Let U be a tiling of the plane by p. Let ! be the upperbound of the lengths of the edges in U.

s There are two possibilities. There exists an edge of length [ or all the edges have a length strictly less than
L.

n We first treat the former case.
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A) There exists in the tiling an edge of length I. :
The first step is to prove that the maximum edge is " propagated” in the tiling, and this in two possible
ways. . :
Lemma 5.6.— Let q be a tile in U and 7(u1), 9(u2), g(u3), q(us) for consecutive tiles in a surrounding of ¢
in U such that [q(uz),q(us)] has length | (the mazimum length), and q(u1),q(uq) are adjacent to q (Figure
5.8). Then U satisfies the following properties:
1) Uy = Up — U3z OT Ug = U3 — Un
11) If one of both equalities does not hold, then ¢ is a pseudo-parallelogram.
The part i) proves that the maximum edge between q(uz) andq(us) is propagated at least on one side
between ¢ and ¢(u1) or q(u4) and perhaps on the two sides; moreover if it is propagated only on one side,
then ¢ is a pseudo-parallelogram. '

Fig. 5.8

Proof . — First let us observe that q(u,), -- -, ¢(u4) exist by lemma 4.2. Let [ q(wi)] = [Aidiz].
Then by lemma 4.5, we have

lo(ws), q(uis1] = [AiAis1] and [q(uig1, o(ui)] = [Aly, Ad]

Assume that u; # up — u3 and ug # u3 — us. Since [9,9(m1)] = [A1A2] and [g(u3), g(u2)] = [A4A4] it
implies A; # A}. :

In the same way us # uz—u, implies A» # A%. Since (A3, Ay, A3) is a contact, so is (A2, Aa, A%). And
we have two distinct contacts (A2, 41, A3) and (A2, A4, Af). We have also two distinct contacts (A5, A5, Ay)
and (A3, Az, Ag). We have 4; # A, so lemma 5.1 can be applied to the first distinct contacts. And A4 # As
implies lemma 5.1 can be applied to the last distinct contacts. So we have the scheme:

oo+ . ot

/,._GC\
A3 AL A2 A3 A~WA3

P B B_*

Fig. 5.8bis

But [g(u2), q(u3)] is of length I. So [[A3A44]] < [[A4A5]], whence |a| < |[A445]].

Also |[A5A45]] < |[A4A45]|, whence |3] < [[A4A45]]. it implies that the curve centerd in A5 with length
2inf(la|,|B]) is a closed curve and there is a contradiction. So 1) is proved. Now, ii) is an immediate
consequence of Corollary 5.5.2. a
Definition.— Let e be the edge [g(u2), g(u3)].

If uy = up — u3 and uy = uz — uy, we will say that the maximum edge is propagated two-sidedly over
q (Figure 5.9.1). ;
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If u; = up — uz and u4 # us — u2, the maximum edge e is propagated on the left over q (Figure 9.9.2).

o possible If uy # us — us and us = up — u3 the edge e is propagated on the right over q (Figure 5.9.3).
wding of q :
q (Figure
1 one side
one side,
1542] it
' Fig. 5.9.2
;)- And
AgrA‘l)
4 -'/E A5
ength Fig. 5.9.3
sdiate At this step, two cases have to be considered. =
o Case 1 Every time the edge e appears in the tiling, it is two-sidedly propagated at the iwo eziremities of e
(so, four new occurrences of e appear). )
J over Case 2 There exists an occurrence of e in the tiling, and an extremity of e such that e is propagated only on

the left, or on the right.



Case 1

We can use the scheme of Figure 5.3.1. The curve [45A,] has a strictly positive length. So there
exists in U, in a surrounding of q, a tile g(ug) neighbouring to g(u;) and adjacent to ¢ (before q(u,)). Let
(A%, A1, X) be the contact of the triad (u1),¢,q(uo)). Let us observe that:

(2(u0), g(u1)] = [A2X] and [g, ¢(u2)] = [A243]

o If X # As then (A}, A3, A}) and (4,, X, A%) are two distinct contacts. So, using lemma 5.1 and 5.2,
two situations are available. =%

eleia, o h
Then q is a pseudo-parallelogram A;.A4;A4)Aj of type 2 (43 = A}). And we have the following scheme
(Figure 5.10): .

glud)

Fig. 5.10

Now considering the edge e = [g, ¢(u4)] and the tile q(uo), this edge is propagated two-sidedly over g(uo)
so ¢(u4 +uo) belongs to U. In the same way, g(u; — uo) and g(u; + ug) belong to U. Iterating this argument,
we prove that all the tiles g(kug + k'us), (k,k’ € Z belong to U, but these tiles realize a regular tiling. So,
U is regular.

o If X # A,

Then g is a pseudo-parallelogram A; A> A} A} of type 1 or of type 2 with [45A4}] a line segment and two
possible schemes corresponding to the two cases (Figure 5.11.1, 5.11.2).




l. So there
7(uy1)). Let

1 and 5.2,

1g scheme

er g(uop)
Jument,
[ng. So,

nd two

glu2) q(u3)

AZA3 A

alul) o] glud)
Al
AT SN

aq(u0)
Fig. 5.11.2

In the two cases, we iterate the process of propagation of the edge [g(u2),¢(u3)] and we obtain that the
tiling is invariant in the translation of vector uz — us = uy. .

e If X = Az we obtain the Figure 5.11.3

Fig. 5.11.3

By the hypothesis of propagation of the edge [g(u1), ], g(ua + ug) belongs to the tiling, and iterating
the process, we obtain that U is half-periodic for vector ug = uz — uy (U is not necessarily regular because
[424!] can be a non-primitive curve).

Case 2

We can use the scheme of Figure 5.9.3. Somewhere in the tiling appears this configuration where
[9(u2), g(u3)] has length [ and u; # uy — uz, ug = upy — us.

If we look at the triad (g(u1),q(u2),q), it has contact (4}, A%, As). So, since Al # A4, there are two
different contacts (Az, A}, A3) and (A2, Ay, A3). And, looking at the proof of lemma 5.6 we can conclude
that p is a pseudo-parallelogram A, A3 A4 A} of type 1. And because of the maximality of [g, ¢(us)], we can
apply lemma 5.4.1, so g(u; — u3) belongs to the tiling(Figure 5.12) (we have represented [A3A5] as a line
segment, to simplify the picture but it is only assumed to be a non-primitive curve and < [A542] > to be
the mirror image of a conjugate of < [A345] >). - :
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Fig. 5.12

To achieve the reasoning we have to discuss on the place of point A} .
o If Al = 4} A
In that case, by maximality of I, we have A3 = A4. And up — u; = u3z — Uy = ua (Figure 5.12.1).

qul=-u2)

Fig. 5.12.1

There is a contradiction because in that case e is propagated two-sidedly. So, one has:

o Al £ 4} i
Whence, we can apply lemma 5.4.2 to the figure 5.12. And so g(—ua) belongs to U. By lemme 5.4.3,
q(us — u2) belongs to I (Figure 5.13). _

S

o e g e, A

AR N e

qlul-u2)

PE R LA

Fig. 5.13

Iterating the process, we obtain that g(u; — kus), q(—ku,), q(us — kus) belong to U for every k > 0.

In the same way gq(u; + u») belongs to U by lemma 5.4.1 then q(ua) belongs to U by lemma 5.4.2,
at last g(us + uz) belongs to U with lemma 5.4.3, and we can iterate the process. So the biinfinite band
B = {q(kus)/k € Z} belongs to U.

L ke B 1 i 5

I
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and

And the lemma 5.4.4 provides the result in case A.

B) Every edge in the tiling has a length strictly less than [.—

It is possible that in the tiling the upperbound of the lengths of the edges is not reached. For example,
with a rectangle, we can realize a tiling where the upperbound of lengths of edges is equal to'the larger side
of the rectangle, but where no edge has this size. So there exists a point A of the boundary of p which is
an accumulation point for the left extremity of the edges of the tiling (because [ is not attempted, there is
an infinite number of edges). Let E be the set of edges of U. From E we can extract an infinite sequence
S, of edges S1 = ([AnBn]) so that their left extremity A, converges monotonously to A (by the left or by
the right) and such that the upperbound of lengths of edges in S; is equal to [. Now, looking at the right
extremity B, of edges of S; we can extract a subsequence S such that this right extremity converges to a
point B, monotonously (by the left or by the right) and keeps again an upperbound of lengths equal to [.
So it implies that |< [AB] >| = 1.

At last, considering in the tiling U, the contacts in points A,; they can be written (A,,Cy, By,), and
one more time, we extract a subsequence §5 of S; so that the sequence C, converges monotonously to a
point C.

The sequence (A,) and (B,) cannot be ultimately constant because there is no edge of length I. .

But we will prove now the following statement: '
Lemma.— Among the three sequences (An), (Bn),(Cr), we have:

(A,) and (C,) are trivial and (By) is not trivial or (B,) and (C,) are trivial and (A,) is not trivial.
Proof .— The two sequences (A,) and (B,) cannot be both trivial because of the hypothesis about /. Let us
suppose for example that (B,,) is trivial but not (A,). Then A, converges to A monotonously by the right
side. We have to prove that (C,) is not trivial. If not, (Cn) converges to C by the right side (Figure 5.14);
otherwise, since A/, converges to A on the right we would have a sequence of edges [C, A} which are nested

and it is impossible because of corollary 4.5 bis.

2 @08 B Bl b
: Cn
& \

3\"‘";{—— A
n

Fig. 5.14

So if (Cy) is not trivial, (C,) converges to C by the right side and the edges [Cn Al,] are overlapping.

Let n > m. Corollary 4.5 bis provides the following equation:

Let < [CpAL] >=v.

Since < [CrrAlL] > =< [CihAm] > and < [CLAL] > =< [C]AL] >, the curve < C! Al ] > admits 7 as
left and right factor. So we have an equation

at =18

But n and m cannot be chosen large enough to have |a| < |v]. So ¥ belongs to ata’ where o’ is a left
factor of . When n and m grow up, the curve [C,A/,] converges to [CA’] and |a| converges to zero. It
implies that [CA’] is a line segment (lemma 3.1).

But if [CA'] is a line segment, [Cr A,] is also a line segment, for n large enough, and considering three
edges [Cn, A, ], [Cn, A7, ], [Cas 4r,] With ny < n2 < ng, we get a contradiction:

[Ca, A}, ] is a line segment containing strictly [Ca,A,,]. And also [C},, AAn,] is a line segment containing
strictly [C},, An,]. So [Cn,A7,] cannot be an edge between two instances of p, the edge is necessarily larger.

Finally, we have proved that (C,) is trivial. And the proof of lemma is achieved. ™

Let us assume that (A4,) and (C,) are trivial and (B,) not. Then we have:
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Lemma.— [AC] is a line segment.

Proof — By the same kind of argument that in the preceeding lemma we get that [AB] and [BC] are .
segments, and also [AB,] and [B,C] so [AC] is a segment line. So, somewhere in the tiling we have t
following situation: a contact (4,C, B,) in a triad (q,r,s) (Figure 5.15) and B, is as near as we want to L
[AC] is a segment line.

A
s
C Bh A
A B A BB E
r q [
& AjC A
Fig. 5.15

If s(ﬁ] does not belong to the tiling, by lemma 5.4.5 it implies that there exists a primitive curve
Yn = T1,n72,» such that ; I
|

<[CA>€ 7m0 and < [A'B.] >= 72,.. ?

But this cannot happen for another value m > n. Indeed we would have < {A'B,] >= ya.m. And 1
l¥2,m| > lv2,n]- So ¥1.» would end with a line segment oriented as [A’B;,]. Then there is an impossibility .for j
p in point C’, the boundary of p would admit a factor centered in C’ which is a closed curve. So changing

the value of n s(CT‘l) belongs to the tiling. For the same reason, r(@?‘l‘) belongs to U. And now, iterating
the process s(kCA) and r(kCA) belong to U for k € Z. :

We have just now to apply lemma 5.4.4. It achieves the proof of case B and theorem 5.5 is proved. .
We can give now some complements about exact tiles and their surroundings which are deduced from '
the proof of the main theorem. A

6 Surroundings of exact tiles
i
The different lemmas established in the previous section are now very useful to describe all the complete °
surroundings of an exact tile.
Theorem 6.1.— Every complete surrounding of an ezact tile contains 6, T, or Stiles, and the minimal
surrounding ertracted of the complete one contains respectively 6, 5, or 4 files.
Proof.— First of all, by Corollary 4.3 every surrounding can be extended in a tiling of the whole plane, so
we have just to look at the surroundings appearing in the tilings of the plane, and observe in the proof of
theorem 5.5 what kinds of surrounding appear. [
We give below the different complete and respective minimal surroundings of an exact tile.
Complete 6-surroundings.—
These surroundings are also minimal.
*<BA > B'A>
* There exists a curve a = ajas such that:

g

< AC >€a*a;, <CB >€ aza’

< A'D >€ d1a*, < DB’ >€ a*d»
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Fig. 6.3

From this description we deduce immediately the following property:

Proposition 6.2.— If a tile has a complete surrounding with 7 tiles then it has also a complete surrounding
with 6 or 8 tiles. )
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