This:
M7#5 = (4,4,3,1) = augmented major tetrachord = 4-19B
means that:
All the possible chords (up to chord inversions) are here! The ordering is arbitrary and the interval-stacking definition is "cyclic", for example (4,4,3,1) is the same thing as (4,3,1,4), (3,1,4,4) and (1,4,4,3).
The names of chords (such as dim7, aug, maj7#5 are quite arbitrary and loosely based on "jazz harmony".
Descriptions like "augmented major tetrachord = 4-19B" come from a classification included in the music21 Python library.
You can wonder about things like "Did you know that there are exactly 18 pentads that contain 10 different triads, and that this is the maximum number of triads that a pentad can contain?" Chords of special interest have a special background.
I can generate the same list for chords on 13 different notes (13 divisions of the octave), or any other n. What about n=2i+1? This is a simple model that just counts intervallic configurations of n different notes up to octave, in which chord inversions and modes are the same thing.What's the smallest n such that there is an all-interval trichord? Is there such an n? (In reference to the 4 all-interval tetrachords when n=12.)
Go to n-chords, for n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
Go to n-chords, for n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
tt = (6,6) = Augmented Fourth = 2-6 [up]
tt
54 = (7,5) = Perfect Fifth = 2-5 [up]
54
b63 = (8,4) = Augmented Fifth = 2-4 [up]
b63
6b3 = (9,3) = Major Sixth = 2-3 [up]
6b3
b72 = (10,2) = Augmented Sixth = 2-2 [up]
b72
7b2 = (11,1) = Major Seventh = 2-1 [up]
7b2
Go to n-chords, for n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
aug = (4,4,4) = augmented triad = 3-12 [up]
min = (5,3,4) = enharmonic equivalent to minor triad = 3-11A [up]
maj = (5,4,3) = major triad = 3-11B [up]
44 = (5,5,2) = quartal trichord = 3-9 [up]
dim = (6,3,3) = diminished triad = 3-10 [up]
13b7 = (6,2,4) = incomplete dominant-seventh chord = 3-8A [up]
13b5 = (6,4,2) = incomplete half-diminished seventh chord = 3-8B [up]
4tt = (6,1,5) = tritone-fourth = 3-5A [up]
tt4 = (6,5,1) = tritone-fourth = 3-5B [up]
1b34 = (7,3,2) = incomplete dominant-seventh chord = 3-7B [up]
1b3b7 = (7,2,3) = incomplete minor-seventh chord = 3-7A [up]
134 = (7,4,1) = incomplete major-seventh chord = 3-4B [up]
137 = (7,1,4) = incomplete major-seventh chord = 3-4A [up]
22 = (8,2,2) = whole-tone trichord = 3-6 [up]
1b33 = (8,3,1) = major-minor trichord = 3-3B [up]
1b37 = (8,1,3) = major-minor trichord = 3-3A [up]
2m2 = (9,2,1) = minor trichord = 3-2B [up]
m22 = (9,1,2) = phrygian trichord = 3-2A [up]
m2m2 = (10,1,1) = chromatic trimirror = 3-1 [up]
Go to n-chords, for n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
dim7 = (3,3,3,3) = diminished seventh chord = 4-28 [up]
m7 = (4,3,2,3) = minor seventh chord = 4-26 [up]
m7b5 = (4,2,3,3) = half-diminished seventh chord = 4-27A [up]
7 = (4,3,3,2) = German augmented sixth chord = 4-27B [up]
7b5 = (4,2,4,2) = French augmented sixth chord = 4-25 [up]
7#5 = (4,4,2,2) = augmented seventh chord = 4-24 [up]
M7#5 = (4,4,3,1) = augmented major tetrachord = 4-19B [up]
mM7 = (4,4,1,3) = minor-augmented tetrachord = 4-19A [up]
M7 = (4,3,4,1) = major seventh chord = 4-20 [up]
7sus4 = (5,2,3,2) = quartal tetramirror = 4-23 [up]
69 = (5,3,2,2) = perfect-fourth minor tetrachord = 4-22B [up]
add9 = (5,2,2,3) = major-second major tetrachord = 4-22A [up]
mM7b5 = (5,1,3,3) = major-diminished tetrachord = 4-18A [up]
min#4 = (5,3,3,1) = minor-diminished tetrachord = 4-18B [up]
135#9 = (5,3,1,3) = major-minor tetramirror = 4-17 [up]
add#4 = (5,4,2,1) = all-interval tetrachord = 4-29B [up]
add4 = (5,4,1,2) = perfect-fourth major tetrachord = 4-14B [up]
136b7 = (5,1,2,4) = all-interval tetrachord = 4-29A [up]
M7b5 = (5,1,4,2) = minor-second quartal tetrachord = 4-16A [up]
madd9 = (5,2,1,4) = major-second minor tetrachord = 4-14A [up]
134b7 = (5,2,4,1) = tritone quartal tetrachord = 4-16B [up]
44b2 = (5,5,1,1) = perfect fourth tetramirror = 4-6 [up]
4b24 = (5,1,5,1) = double tritone tetramirror = 4-9 [up]
9no5 = (6,2,2,2) = whole-tone tetramirror = 4-21 [up]
1b36b7 = (6,1,2,3) = minor-second diminished tetrachord = 4-13A [up]
7#9no5 = (6,2,3,1) = all-interval tetrachord = 4-15B [up]
1b367 = (6,2,1,3) = harmonic minor tetrachord = 4-12A [up]
dimadd4 = (6,3,2,1) = perfect-fourth diminished tetrachord = 4-13B [up]
1b347 = (6,1,3,2) = all-interval tetrachord = 4-15A [up]
dimadd3 = (6,3,1,2) = major-third diminished terachord = 4-12B [up]
7add7 = (6,1,1,4) = major third tetracluster = 4-5A [up]
maj7add11 = (6,1,4,1) = double-fourth tetramirror = 4-8 [up]
134b5 = (6,4,1,1) = major third tetracluster = 4-5B [up]
156b7 = (7,2,1,2) = minor tetramirror = 4-10 [up]
15b6b7 = (7,1,2,2) = phrygian tetrachord = 4-11A [up]
1567 = (7,2,2,1) = lydian tetrachord = 4-11B [up]
15b67 = (7,1,3,1) = Arabian tetramirror = 4-7 [up]
1b224 = (7,1,1,3) = minor third tetracluster = 4-4A [up]
1b226 = (7,3,1,1) = minor third tetracluster = 4-4B [up]
2m2m2 = (8,2,1,1) = major-second tetracluster = 4-2B [up]
m2m22 = (8,1,1,2) = major-second tetracluster = 4-2A [up]
m22m2 = (8,1,2,1) = alternating tetramirror = 4-3 [up]
m2m2m2 = (9,1,1,1) = chromatic tetramirror = 4-1 [up]
Go to n-chords, for n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
penta9 = (3,3,2,2,2) = dominant-ninth = 5-34 [up]
penta = (3,2,3,2,2) = major pentatonic = 5-35 [up]
(3,3,2,3,1) = Neapolitan pentachord = 5-32B [up]
(3,3,3,2,1) = flat-ninth pentachord = 5-31B [up]
(3,3,1,3,2) = Neapolitan pentachord = 5-32A [up]
(3,3,3,1,2) = diminished minor-ninth chord = 5-31A [up]
augpenta = (4,2,2,2,2) = whole-tone pentachord = 5-33 [up]
(4,3,2,2,1) = minor-ninth chord = 5-27B [up]
(4,1,3,2,2) = enigmatic pentachord = 5-30A [up]
(4,1,2,2,3) = major-ninth chord = 5-27A [up]
(4,2,3,1,2) = Javanese pentatonic = 5-28B [up]
(4,1,2,3,2) = Kumoi pentachord = 5-29A [up]
(4,2,1,3,2) = augmented-sixth pentachord = 5-28A [up]
(4,2,3,2,1) = Kumoi pentachord = 5-29B [up]
(4,3,2,1,2) = minor-diminished ninth chord = 5-25B [up]
(4,2,2,3,1) = enigmatic pentachord = 5-30B [up]
(4,2,1,2,3) = diminished-major ninth chord = 5-25A [up]
(4,2,2,1,3) = diminished-augmented ninth chord = 5-26A [up]
(4,3,1,2,2) = augmented-diminished ninth chord = 5-26B [up]
(4,3,1,1,3) = center-cluster pentamirror = 5-37 [up]
(4,1,3,3,1) = Persian pentamirror = 5-22 [up]
(4,3,3,1,1) = diminished pentacluster = 5-38B [up]
(4,1,1,3,3) = diminished pentacluster = 5-38A [up]
(4,3,1,3,1) = Lebanese pentachord = 5-21B [up]
(4,1,3,1,3) = major-augmented ninth chord = 5-21A [up]
(4,4,1,1,2) = augmented pentacluster = 5-13A [up]
(4,1,4,1,2) = Balinese Pelog pentatonic = 5-20A [up]
(4,4,2,1,1) = augmented pentacluster = 5-13B [up]
(4,4,1,2,1) = minor-major ninth chord = 5-17 [up]
(4,2,4,1,1) = asssymetric pentamirror = 5-15 [up]
monk5 = (4,2,1,4,1) = Hirajoshi pentatonic = 5-20B [up]
(5,2,2,1,2) = major pentachord = 5-23B [up]
(5,2,1,2,2) = dorian pentachord = 5-23A [up]
(5,1,2,2,2) = phrygian pentachord = 5-24A [up]
(5,2,2,2,1) = lydian pentachord = 5-24B [up]
(5,1,2,1,3) = major-minor-diminished pentachord = 5-16A [up]
(5,3,2,1,1) = minor-seventh pentacluster = 5-36B [up]
(5,1,1,2,3) = major-seventh pentacluster = 5-36A [up]
(5,2,1,1,3) = center-cluster pentachord = 5-11A [up]
(5,2,1,3,1) = Roma (Gypsy) pentachord = 5-18B [up]
(5,1,1,3,2) = double-seconds triple-fourth pentachord = 5-14A [up]
(5,3,1,1,2) = center-cluster pentachord = 5-11B [up]
(5,1,2,3,1) = Javanese pentachord = 5-19A [up]
(5,2,3,1,1) = double-seconds triple-fourth pentachord = 5-14B [up]
(5,3,1,2,1) = major-minor diminished pentachord = 5-16B [up]
(5,1,3,2,1) = Balinese pentachord = 5-19B [up]
(5,1,3,1,2) = Roma (Gypsy) pentachord = 5-18A [up]
(5,4,1,1,1) = major-third pentacluster = 5-5B [up]
(5,1,4,1,1) = double pentacluster = 5-7B [up]
(5,1,1,4,1) = double pentacluster = 5-7A [up]
(5,1,1,1,4) = major-third pentacluster = 5-5A [up]
m222m2 = (6,1,2,2,1) = locrian pentachord = 5-12 [up]
m22m22 = (6,1,2,1,2) = alternating pentachord = 5-10A [up]
m2m222 = (6,1,1,2,2) = tritone-expanding pentachord = 5-9A [up]
2m22m2 = (6,2,1,2,1) = alternating pentachord = 5-10B [up]
2m2m22 = (6,2,1,1,2) = tritone-symmetric pentamirror = 5-8 [up]
22m2m2 = (6,2,2,1,1) = tritone-contracting pentachord = 5-9B [up]
(6,3,1,1,1) = minor-third pentacluster = 5-4B [up]
(6,1,1,1,3) = blues pentacluster = 5-4A [up]
(6,1,1,3,1) = Asian pentacluster = 5-6A [up]
(6,1,3,1,1) = Asian pentacluster = 5-6B [up]
m2m22m2 = (7,1,1,2,1) = minor-second major pentachord = 5-3A [up]
2m2m2m2 = (7,2,1,1,1) = major-second pentacluster = 5-2B [up]
m22m2m2 = (7,1,2,1,1) = Spanish pentacluster = 5-3B [up]
m2m2m22 = (7,1,1,1,2) = major-second pentacluster = 5-2A [up]
m2m2m2m2 = (8,1,1,1,1) = chromatic pentamirror = 5-1 [up]
Go to n-chords, for n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
augscale = (2,2,2,2,2,2) = whole tone scale = 6-35 [up]
(3,2,2,2,2,1) = augmented-eleventh = 6-34B [up]
(3,1,2,2,2,2)
penta9, (4,2,2,1,3), (4,2,1,3,2), (5,2,2,2,1), (4,1,3,2,2), augpenta
69, mM7, 1b367, 1567, 7b5, 7#5, 1b347, 134b7, add#4, 9no5, m7b5, 7, add9
dim, 13b5, 1b34, 2m2, maj, 134, aug, 1b3b7, 1b37, 13b7, 44, 22, 4tt, min
(3,2,1,2,2,2) = dorian hexachord = 6-33A [up]
(3,2,2,2,1,2)
(4,3,2,1,2), (5,2,1,2,2), penta9, (4,2,3,2,1), (5,1,2,2,2), penta
7sus4, dimadd4, madd9, 136b7, 15b6b7, M7b5, 69, 9no5, m7b5, m7, 7, 156b7, add9
dim, 13b5, 1b34, tt4, 2m2, 1b3b7, 44, 13b7, m22, 22, min, maj, 137
(3,2,2,1,2,2) = C all combinatorial (P6, I3, RI9) = 6-32 [up]
(3,2,2,2,1,2) = dominant-eleventh = 6-33B [up]
(3,2,1,2,2,2)
penta9, (4,2,1,2,3), (5,2,2,1,2), (5,2,2,2,1), (4,1,2,3,2), penta
7sus4, 156b7, 1b36b7, 1567, add4, add#4, 134b7, 69, 9no5, m7b5, m7, 7, add9
dim, 13b5, 1b34, 2m2, maj, 134, 1b3b7, m22, 13b7, 44, 22, 4tt, min
(3,1,2,2,2,2) = Scriabin's Mystic-chord = 6-34A [up]
(3,2,2,2,2,1)
(4,3,1,2,2), (4,2,3,1,2), penta9, (4,2,2,3,1), augpenta, (5,1,2,2,2)
69, 7#9no5, 136b7, 15b6b7, 7b5, 7#5, M7b5, dimadd3, 9no5, m7b5, 7, M7#5, add9
dim, 13b5, 137, tt4, maj, aug, 1b3b7, m22, 44, 1b33, 13b7, 22, min, 1b34
(3,3,2,2,1,1) = forte class 6-46B = 6-46B [up]
(3,3,1,1,2,2)
penta9, 22m2m2, (4,3,2,2,1), (3,3,2,3,1), (4,1,1,3,3), (5,2,1,1,3)
69, 7#9no5, madd9, 1567, 9no5, m7, 134b5, 135#9, mM7b5, m7b5, 7, M7, 2m2m2, add9, 1b224
dim, 1b34, maj, 134, 13b7, 1b33, 44, 1b37, 137, 13b5, tt4, 2m2, 1b3b7, 22, min, m2m2
(3,2,3,1,2,1) = combinatorial RI (RI4) = 6-49 [up]
(3,2,3,1,2,1)
(5,1,2,1,3), (4,2,1,3,2), (5,3,1,2,1), (4,2,3,1,2), (3,3,1,3,2), (3,3,2,3,1)
7#9no5, 136b7, 1b367, 7b5, dimadd3, min#4, 1b347, add#4, 135#9, m7, mM7b5, m7b5, m22m2, 7
dim, 13b5, 1b34, 2m2, maj, 1b3b7, 1b33, m22, 1b37, 13b7, 4tt, min, tt4
(3,3,2,1,2,1) = combinatorial I (I1) = 6-27B [up]
(3,3,1,2,1,2)
(4,3,2,1,2), (5,1,2,1,3), 2m22m2, (3,3,2,3,1), (3,3,3,2,1)
dimadd4, 7#9no5, 136b7, 156b7, 1b367, m7, mM7b5, 135#9, m22m2, 7, dim7
dim, 1b34, tt4, 2m2, 1b3b7, 1b33, m22, 1b37, 13b7, min, maj
(3,2,3,1,1,2) = forte class 6-47A = 6-47A [up]
(3,2,3,2,1,1)
(5,1,1,2,3), (4,1,2,3,2), (5,3,1,1,2), (5,2,3,1,1), penta, (3,3,2,3,1)
7sus4, 7#9no5, m2m22, 1b36b7, add4, 134b7, 69, 1b226, 135#9, m7, mM7b5, 44b2, 7, add9
dim, 4tt, tt4, maj, 134, 1b3b7, m22, 1b33, 1b37, 13b7, 44, 22, min, 1b34, m2m2
(3,1,2,3,1,2) = Messiaen's truncated mode 2 = 6-30A [up]
(3,2,3,2,1,1) = blues scale = 6-47B [up]
(3,2,3,1,1,2)
(5,1,1,3,2), (5,2,1,1,3), (5,3,2,1,1), (4,2,3,2,1), (3,3,1,3,2), penta
7sus4, dimadd4, madd9, M7b5, min#4, 1b347, 69, m7b5, 135#9, m7, 44b2, 2m2m2, add9, 1b224
dim, 13b5, 137, tt4, 2m2, 1b3b7, min, 1b33, 44, 1b37, 22, 4tt, 1b34, maj, m2m2
(3,3,1,2,2,1) = double-phrygian heachord = 6-28 [up]
(3,3,1,2,2,1)
(4,3,1,2,2), (4,2,2,1,3), m222m2, (4,1,3,3,1), (3,3,3,1,2), (3,3,3,2,1)
dimadd4, dim7, mM7, 15b6b7, 1b367, 1b36b7, 7#5, 1567, dimadd3, min#4, maj7add11, mM7b5, m7b5, M7#5, 7
dim, 137, maj, 134, aug, 1b37, 13b7, 1b33, 13b5, 1b34, tt4, 4tt, 2m2, 1b3b7, 22, m22, min
MttM = (3,2,1,3,2,1) = Stravinsky's Petrouchka-chord = 6-30B [up]
(3,1,2,3,1,2)
(5,1,3,2,1), (4,2,1,3,2), (3,3,3,2,1)
dimadd4, dim7, 1b367, 7b5, 1b347, add#4, mM7b5, 4b24, 7
dim, 13b5, 4tt, tt4, 2m2, 13b7, 1b37, 1b34, maj
(3,2,2,1,3,1) = combinatorial I (I11) = 6-31B [up]
(3,1,3,1,2,2)
(4,2,2,1,3), (4,3,2,2,1), (4,1,3,2,2), (3,3,1,3,2), (5,2,1,3,1), (4,1,3,1,3)
69, mM7, madd9, 1b367, 1567, 7#5, 1b347, min#4, 134b7, m7b5, m7, 15b67, 135#9, M7
dim, 137, maj, 134, aug, 13b7, 44, 1b33, 1b37, 13b5, 1b34, 4tt, 2m2, 1b3b7, 22, min
(3,2,1,2,3,1) = combinatorial RI (RI1) = 6-50 [up]
(3,2,1,2,3,1)
(4,3,2,1,2), (4,2,1,2,3), (5,1,2,3,1), (5,1,3,2,1), (3,3,1,3,2), (3,3,2,3,1)
dimadd4, 7#9no5, 136b7, 156b7, 1b36b7, min#4, 1b347, add#4, 135#9, m7, mM7b5, m7b5, 4b24, 7
dim, 13b5, 4tt, tt4, maj, 2m2, 1b3b7, m22, 1b33, 1b37, 13b7, 1b34, min
(3,2,1,3,1,2) = combinatorial RI (RI9) = 6-29 [up]
(3,2,1,3,1,2)
(5,1,3,1,2), (4,1,2,3,2), (4,2,3,2,1), (3,3,3,1,2), (5,2,1,3,1), (3,3,3,2,1)
7sus4, dimadd4, dim7, madd9, 1b36b7, 1b367, add4, M7b5, dimadd3, min#4, 134b7, m7b5, 15b67, mM7b5, 7
dim, 137, maj, 134, 44, 1b33, 13b7, 1b37, 13b5, 1b34, tt4, 4tt, 2m2, 1b3b7, m22, min
(3,2,2,3,1,1) = combinatorial RI (RI2) = 6-48 [up]
(3,2,2,3,1,1)
(5,1,1,3,2), (4,1,3,2,2), (4,2,2,3,1), (5,2,3,1,1), penta, (4,3,1,1,3)
7sus4, mM7, 7#9no5, M7b5, 7#5, 1b347, 134b7, 69, 1b226, m7, 44b2, M7#5, add9, 1b224
1b34, maj, 134, aug, 13b7, 1b33, 44, 1b37, 137, 13b5, tt4, 4tt, 1b3b7, 22, min, m2m2
(3,3,2,1,1,2) = combinatorial RI (RI6) = 6-45 [up]
(3,3,2,1,1,2)
penta9, (5,1,1,2,3), (5,3,2,1,1), (3,3,3,1,2), (3,3,3,2,1), 2m2m22
69, dimadd4, dim7, m2m22, 1b36b7, 1b367, min#4, dimadd3, 9no5, m7b5, mM7b5, 44b2, 7, 2m2m2, add9
dim, 1b34, maj, 1b37, 1b33, 44, 13b7, 13b5, tt4, 4tt, 2m2, 1b3b7, m22, 22, min, m2m2
(3,1,3,1,2,2) = combinatorial I (I7) = 6-31A [up]
(3,2,2,1,3,1)
(4,3,1,2,2), (4,1,2,2,3), (5,1,3,1,2), (4,2,2,3,1), (3,3,2,3,1), (4,3,1,3,1)
7#9no5, 15b6b7, add4, M7b5, 7#5, dimadd3, m7, mM7b5, 15b67, 135#9, 7, M7, M7#5, add9
dim, 1b34, maj, 134, aug, 1b37, 13b7, 44, 1b33, 137, 13b5, tt4, 1b3b7, m22, 22, min
(3,3,1,1,2,2) = forte class 6-46A = 6-46A [up]
(3,3,2,2,1,1)
penta9, (5,3,1,1,2), (4,1,2,2,3), (3,3,1,3,2), m2m222, (4,3,3,1,1)
69, m2m22, 15b6b7, 7add7, add4, 1b347, min#4, m7b5, 135#9, 9no5, m7, 1b226, M7, 7, add9
dim, 137, maj, 134, 1b37, 1b33, 13b7, 44, 13b5, 1b34, 4tt, 1b3b7, m22, 22, m2m2, min
(3,3,1,2,1,2) = combinatorial I (I11) = 6-27A [up]
(3,3,2,1,2,1)
(4,2,1,2,3), (5,3,1,2,1), (3,3,3,1,2), (3,3,1,3,2), m22m22
dim7, 156b7, 1b36b7, dimadd3, 1b347, min#4, add#4, m7, 135#9, m7b5, m22m2
dim, 13b5, 2m2, 1b3b7, 1b37, m22, 1b33, 4tt, 1b34, maj, min
(3,3,1,3,1,1) = quasi raga Bauli = 6-44B [up]
(3,3,1,1,3,1)
(4,1,3,3,1), (3,3,1,3,2), (6,1,3,1,1), (4,3,1,3,1), (4,1,1,3,3), (4,3,1,1,3)
mM7, min#4, 1b347, maj7add11, 135#9, 15b67, 134b5, 1b226, m7, mM7b5, m7b5, M7#5, M7, 1b224
dim, 13b5, 137, tt4, maj, 134, aug, 1b3b7, 1b33, 1b37, 4tt, 1b34, min, m2m2
(3,1,3,1,3,1) = E all combinatorial (P2, P6, P10, I3, I7, R4, R8, RI1, RI5, RI9) = 6-20 [up]
(3,3,1,1,3,1) = Schoenberg Anagram hexachord = 6-44A [up]
(3,3,1,3,1,1)
(4,1,3,3,1), (6,1,1,3,1), (3,3,2,3,1), (4,1,3,1,3), (4,3,3,1,1), (4,3,1,1,3)
mM7, 7#9no5, 7add7, min#4, maj7add11, mM7b5, 15b67, 135#9, 1b226, m7, M7#5, 7, M7, 1b224
dim, 137, tt4, maj, 134, aug, 1b3b7, 1b33, 1b37, 13b7, 4tt, 1b34, min, m2m2
(3,3,3,1,1,1) = combinatorial RI (RI3) = 6-42 [up]
(3,3,3,1,1,1)
(6,3,1,1,1), (3,3,3,1,2), (6,1,1,1,3), (3,3,3,2,1), (4,3,3,1,1), (4,1,1,3,3)
dimadd4, 1b36b7, 1b367, 7add7, dimadd3, min#4, 134b5, 1b226, m7b5, mM7b5, m2m2m2, 7, M7, dim7, 1b224
dim, 1b34, maj, 134, 1b33, 13b7, 1b37, 137, 13b5, 4tt, tt4, 2m2, 1b3b7, m22, min, m2m2
(4,1,2,2,2,1) = phrygian hexamirror = 6-26 [up]
(4,1,2,2,2,1)
(4,1,4,1,2), (5,2,2,2,1), (4,3,2,2,1), (4,1,2,2,3), (5,1,2,2,2), monk5
69, madd9, 136b7, 15b6b7, 1567, add4, M7b5, 134b7, add#4, 9no5, m7, maj7add11, M7, add9
2m2, 13b5, 4tt, tt4, maj, 134, 1b3b7, m22, 13b7, 44, 22, 1b34, min, 137
(4,2,1,2,2,1) = minor hexachord = 6-25B [up]
(4,1,2,2,1,2)
m222m2, (4,2,1,2,3), (4,3,2,2,1), (4,2,3,2,1), (5,2,1,2,2), monk5
7sus4, dimadd4, 156b7, madd9, 15b6b7, 1b36b7, 1567, M7b5, add#4, 69, m7, m7b5, maj7add11, M7
dim, 13b5, tt4, 2m2, maj, 134, 1b3b7, m22, 44, 22, 4tt, 1b34, min, 137
(4,2,2,2,1,1) = combinatorial I (I5) = 6-22B [up]
(4,1,1,2,2,2)
22m2m2, (5,2,2,2,1), (4,2,2,3,1), (4,4,2,1,1), augpenta, (4,2,4,1,1)
7#9no5, 1567, 7#5, 7add7, M7b5, 7b5, add#4, 134b7, 9no5, 134b5, M7#5, 2m2m2, add9
13b5, 137, tt4, 2m2, 134, aug, 1b3b7, 13b7, 1b33, 44, 22, 4tt, maj, m2m2
(4,2,1,2,1,2) = combinatorial RI (RI8) = 6-23 [up]
(4,2,1,2,1,2)
(4,3,2,1,2), 2m22m2, (4,2,3,1,2), (4,2,1,3,2), (4,2,1,2,3), m22m22
dimadd4, 7#9no5, 136b7, 156b7, 1b367, 1b36b7, 7b5, dimadd3, 1b347, add#4, m7, m7b5, 7, m22m2
dim, 13b5, 1b34, tt4, 2m2, 1b3b7, 13b7, 1b37, m22, 1b33, 4tt, min, maj
(4,2,2,1,2,1) = melodic-minor hexachord = 6-24B [up]
(4,1,2,1,2,2)
(4,2,2,1,3), 2m22m2, (5,2,2,1,2), (4,2,2,3,1), (4,2,3,2,1), (4,4,1,2,1)
7sus4, dimadd4, mM7, madd9, 1b367, 7#9no5, 1567, 7#5, add4, M7b5, m7b5, M7#5, m22m2, 156b7, add9
dim, 137, maj, 134, aug, 13b7, 1b33, 44, 1b37, 13b5, 1b34, tt4, 2m2, 1b3b7, m22, 22, min
(4,1,2,2,1,2) = locrian hexachord = 6-25A [up]
(4,2,1,2,2,1)
m222m2, (5,2,2,1,2), (4,1,4,1,2), (4,1,2,3,2), (4,1,2,2,3), (4,3,2,1,2)
7sus4, dimadd4, 136b7, 15b6b7, 1b36b7, 1567, add4, 134b7, maj7add11, m7, M7, 7, 156b7, add9
dim, 1b34, tt4, 2m2, 134, 1b3b7, 44, 13b7, m22, 22, 4tt, min, maj, 137
(4,2,1,1,2,2) = combinatorial I (I1) = 6-21A [up]
(4,2,2,1,1,2)
(4,3,1,2,2), (4,2,1,3,2), (4,4,2,1,1), m2m222, augpenta, 2m2m22
m2m22, 15b6b7, 1b367, 7add7, 7b5, 7#5, 1b347, dimadd3, add#4, 9no5, 7, M7#5, 2m2m2
dim, 13b5, 137, 2m2, aug, 1b37, m22, 1b33, 13b7, 22, 4tt, 1b34, maj, m2m2
(4,2,2,1,1,2) = combinatorial I (I3) = 6-21B [up]
(4,2,1,1,2,2)
(4,2,2,1,3), 22m2m2, (4,2,3,1,2), (4,4,1,1,2), augpenta, 2m2m22
mM7, 136b7, m2m22, 7#9no5, 1567, 1b367, 7b5, 7#5, dimadd3, 9no5, m7b5, 134b5, 2m2m2
dim, 13b5, tt4, 2m2, 134, aug, 1b3b7, 1b37, m22, 13b7, 1b33, 22, min, m2m2
(4,1,1,2,2,2) = combinatorial I (I11) = 6-22A [up]
(4,2,2,2,1,1)
(4,4,1,1,2), (4,1,3,2,2), m2m222, augpenta, (5,1,2,2,2), (4,2,4,1,1)
69, mM7, 136b7, m2m22, 15b6b7, 7#5, 7add7, M7b5, 7b5, 1b347, 134b7, 9no5, 134b5
13b5, 4tt, tt4, 134, aug, m22, 1b37, 44, 13b7, 22, min, 1b34, m2m2, 137
(4,1,2,1,2,2) = forte class 6-24A = 6-24A [up]
(4,2,2,1,2,1)
(4,3,1,2,2), (5,2,1,2,2), (4,1,2,3,2), (4,1,3,2,2), (4,4,1,2,1), m22m22
69, mM7, madd9, 156b7, 7sus4, 1b36b7, 7#5, add4, dimadd3, 1b347, 134b7, 15b6b7, 7, M7#5, m22m2
dim, 1b34, maj, 134, aug, 44, 1b33, 1b37, 13b7, 137, 13b5, 4tt, 2m2, 1b3b7, 22, m22, min
(4,2,1,1,3,1) = combinatorial I (I1) = 6-16B [up]
(4,1,3,1,1,2)
(5,2,1,1,3), (4,2,2,3,1), (6,1,1,3,1), (4,4,2,1,1), monk5, (4,3,1,3,1)
7#9no5, madd9, 7add7, 7#5, M7b5, add#4, maj7add11, 15b67, 135#9, 2m2m2, M7, M7#5, add9, 1b224
137, maj, 134, aug, 13b7, 1b33, 44, 1b37, 13b5, 4tt, tt4, 2m2, 1b3b7, 22, min, m2m2
(4,1,1,1,3,2) = forte class 6-41A = 6-41A [up]
(4,2,3,1,1,1)
(6,1,1,1,3), (4,2,1,3,2), (5,1,1,3,2), (5,4,1,1,1), (4,2,4,1,1), (4,1,2,3,2)
7sus4, 1b367, add4, 7add7, 1b36b7, 7b5, M7b5, 1b347, add#4, 134b7, 134b5, 44b2, m2m2m2, 7, 1b224
dim, 13b5, 137, 2m2, maj, 134, 1b3b7, 44, m22, 13b7, 1b37, 4tt, m2m2, 1b34, tt4
(4,3,1,1,2,1) = combinatorial P (P6) = 6-14B [up]
(4,1,2,1,1,3)
(5,3,1,1,2), (4,3,2,2,1), (4,3,1,1,3), (4,4,1,2,1), m2m22m2, (4,3,1,3,1)
69, mM7, madd9, m2m22, add4, 1567, m7, 1b226, 15b67, 135#9, m22m2, M7, M7#5, 1b224
137, 2m2, maj, 134, aug, 1b3b7, 44, 22, m22, 1b33, 1b37, 1b34, min, m2m2
b72, 6b3, b63, 54, 7b2
(4,1,1,1,2,3) = forte class 6-40A = 6-40A [up]
(4,3,2,1,1,1)
(5,1,1,2,3), (4,1,2,2,3), (5,4,1,1,1), (4,2,1,2,3), m2m2m22, (4,1,1,3,3)
156b7, m2m22, 15b6b7, 1b36b7, add4, add#4, m7, 134b5, m7b5, mM7b5, 44b2, m2m2m2, M7, add9, 1b224
dim, 1b34, maj, 134, 44, 1b37, 137, 13b5, 4tt, tt4, 2m2, 1b3b7, m22, 22, min, m2m2
(4,2,1,3,1,1) = complement of all-tri-chord hexachord (inverted form) = 6-43B [up]
(4,1,1,3,1,2)
(4,2,1,3,2), (6,1,3,1,1), (5,2,1,3,1), (4,2,4,1,1), (4,3,3,1,1), monk5
madd9, 1b367, 7add7, 7b5, M7b5, 1b347, min#4, 134b7, add#4, 15b67, 134b5, 1b226, maj7add11, 7, M7
dim, 13b5, 4tt, tt4, maj, 134, 2m2, 44, 1b37, 1b33, 13b7, m2m2, 1b34, min, 137
(4,1,3,2,1,1) = all tri-chord hexachord (inverted form) = 6-17B [up]
(4,1,1,2,3,1)
(5,3,2,1,1), (4,1,3,2,2), (5,1,3,2,1), (4,4,2,1,1), (5,1,1,4,1), (4,1,3,3,1)
69, dimadd4, mM7, 7add7, 7#5, 1b347, min#4, add#4, 134b7, maj7add11, mM7b5, 2m2m2, 4b24, 44b2, M7#5
dim, 137, maj, 134, aug, 13b7, 1b37, 44, 1b33, 1b34, 13b5, tt4, 4tt, 2m2, 22, min, m2m2
(4,1,3,1,2,1) = forte class 6-19B = 6-19B [up]
(4,1,2,1,3,1)
(5,1,3,1,2), (5,3,1,2,1), (4,4,1,2,1), monk5, (4,1,3,1,3), (4,1,3,3,1)
mM7, madd9, add4, M7b5, dimadd3, min#4, add#4, maj7add11, 135#9, 15b67, mM7b5, m22m2, M7, M7#5
dim, 13b5, 137, tt4, 2m2, 134, aug, 44, 1b33, 1b37, m22, 4tt, maj, min
(4,1,3,1,1,2) = combinatorial I (I3) = 6-16A [up]
(4,2,1,1,3,1)
(5,3,1,1,2), (4,1,4,1,2), (4,4,1,1,2), (4,1,3,2,2), (6,1,3,1,1), (4,1,3,1,3)
69, mM7, 136b7, m2m22, add4, 7#5, 1b347, 134b7, 134b5, maj7add11, 15b67, 1b226, 135#9, M7
137, maj, 134, aug, 13b7, 44, 1b33, 1b37, 13b5, 1b34, tt4, 4tt, m22, 22, m2m2, min
(4,1,2,3,1,1) = combinatorial I (I5) = 6-18B [up]
(4,1,1,3,2,1)
(4,1,4,1,2), (4,1,2,3,2), (5,1,2,3,1), (5,2,3,1,1), (4,3,3,1,1), (5,1,1,4,1)
7sus4, 7#9no5, 136b7, 1b36b7, 7add7, add4, min#4, 134b7, 1b226, maj7add11, 4b24, 44b2, 7, M7
dim, 4tt, tt4, maj, 134, 1b3b7, m22, 1b33, 44, 13b7, 1b34, m2m2, min, 137
(4,3,1,1,1,2) = forte class 6-39B = 6-39B [up]
(4,2,1,1,1,3)
(4,3,1,2,2), (6,3,1,1,1), (4,4,1,1,2), m2m2m22, (4,3,2,1,2), (4,3,1,1,3)
dimadd4, mM7, 136b7, m2m22, 156b7, 7#5, dimadd3, 134b5, 1b226, m7, 15b6b7, m2m2m2, M7#5, 7, 1b224
dim, 1b34, maj, 134, aug, 1b33, 13b7, 1b37, 137, 13b5, tt4, 2m2, 1b3b7, 22, m22, min, m2m2
(4,2,1,1,1,3) = forte class 6-39A = 6-39A [up]
(4,3,1,1,1,2)
(4,2,2,1,3), (4,2,1,2,3), (4,3,1,1,3), (4,4,2,1,1), 2m2m2m2, (6,1,1,1,3)
156b7, mM7, 1b367, 7add7, 1b36b7, 7#5, 1567, add#4, m7b5, m7, 1b226, M7#5, 2m2m2, m2m2m2, 1b224
dim, 1b34, maj, 134, aug, 13b7, 1b33, 1b37, 137, 13b5, 4tt, 2m2, 1b3b7, m22, 22, min, m2m2
(4,3,1,2,1,1) = combinatorial I (I5) = 6-15B [up]
(4,1,1,2,1,3)
(4,3,1,2,2), (5,3,1,2,1), (4,4,2,1,1), m22m2m2, (4,3,3,1,1), (4,3,1,3,1)
15b6b7, 7add7, 7#5, dimadd3, min#4, add#4, m22m2, 1b226, 15b67, 135#9, 2m2m2, 7, M7, M7#5
dim, 1b34, maj, 134, aug, 1b37, 1b33, 13b7, 137, 13b5, 4tt, 2m2, m22, 22, m2m2, min
(4,1,1,3,2,1) = combinatorial I (I11) = 6-18A [up]
(4,1,2,3,1,1)
(5,1,1,3,2), (4,2,3,2,1), (5,1,3,2,1), (4,1,1,3,3), (5,1,4,1,1), monk5
7sus4, dimadd4, madd9, M7b5, 1b347, add#4, m7b5, mM7b5, 134b5, maj7add11, 44b2, 4b24, M7, 1b224
dim, 13b5, 4tt, tt4, maj, 134, 2m2, 1b3b7, 44, 1b37, 1b34, min, m2m2, 137
(4,1,1,3,1,2) = complement of all tri-chord hexachord = 6-43A [up]
(4,2,1,3,1,1)
(4,2,3,1,2), (4,1,4,1,2), (5,1,3,1,2), (6,1,1,3,1), (4,2,4,1,1), (4,1,1,3,3)
7#9no5, 136b7, add4, 7add7, 7b5, M7b5, dimadd3, 134b7, maj7add11, 15b67, 134b5, m7b5, mM7b5, M7, 1b224
dim, 13b5, tt4, maj, 134, 1b3b7, m22, 13b7, 44, 1b33, 1b37, 4tt, min, m2m2, 137
(4,2,3,1,1,1) = forte class 6-41B = 6-41B [up]
(4,1,1,1,3,2)
(6,3,1,1,1), (4,2,3,1,2), (4,2,3,2,1), (5,1,1,1,4), (5,2,3,1,1), (4,2,4,1,1)
7sus4, dimadd4, 7#9no5, madd9, 136b7, 7add7, M7b5, 7b5, dimadd3, 134b7, m7b5, 134b5, 1b226, m2m2m2, 44b2
dim, 13b5, tt4, 2m2, 134, 1b3b7, 13b7, 1b33, 44, m22, 4tt, min, 1b34, m2m2, 137
(4,1,1,2,1,3) = combinatorial I (I11) = 6-15A [up]
(4,3,1,2,1,1)
(4,2,2,1,3), (5,1,2,1,3), (4,4,1,1,2), m2m22m2, (4,1,3,1,3), (4,1,1,3,3)
mM7, 136b7, m2m22, 1b367, 7#5, 1567, 134b5, m7b5, 135#9, 15b67, mM7b5, m22m2, M7, 1b224
dim, 137, maj, 134, aug, 13b7, 1b33, 1b37, 13b5, tt4, 2m2, 1b3b7, 22, m22, min, m2m2
(4,3,2,1,1,1) = forte class 6-40B = 6-40B [up]
(4,1,1,1,2,3)
(4,3,2,1,2), (5,1,1,1,4), (4,3,2,2,1), (5,3,2,1,1), 2m2m2m2, (4,3,3,1,1)
69, dimadd4, madd9, 156b7, 7add7, 1567, min#4, m7, 44b2, 1b226, 2m2m2, m2m2m2, M7, 7, 136b7
dim, 137, maj, 134, 44, 1b33, 13b7, 1b34, tt4, 4tt, 2m2, 1b3b7, 22, m22, m2m2, min
(4,1,1,2,3,1) = all tri-chord hexachord = 6-17A [up]
(4,1,3,2,1,1)
(5,1,1,2,3), (4,1,3,3,1), (4,2,2,3,1), (5,1,2,3,1), (4,4,1,1,2), (5,1,4,1,1)
mM7, 136b7, m2m22, 7#9no5, 1b36b7, 7#5, M7b5, min#4, mM7b5, 134b5, maj7add11, M7#5, 4b24, 44b2, add9
dim, 137, maj, 134, aug, 13b7, 1b37, 1b33, 44, 13b5, 4tt, tt4, 1b3b7, m22, 22, min, m2m2
(4,1,2,1,3,1) = forte class 6-19A = 6-19A [up]
(4,1,3,1,2,1)
(5,1,2,1,3), (4,1,4,1,2), (4,1,3,3,1), (4,4,1,2,1), (5,2,1,3,1), (4,3,1,3,1)
mM7, madd9, 1b367, add4, min#4, 134b7, mM7b5, maj7add11, 15b67, 135#9, m22m2, M7, M7#5, 136b7
dim, tt4, 2m2, maj, 134, aug, 44, 1b37, 13b7, m22, 1b33, 4tt, min, 137
(4,1,2,1,1,3) = combinatorial P (P6) = 6-14A [up]
(4,3,1,1,2,1)
(4,1,2,2,3), (4,3,1,1,3), (4,4,1,2,1), m22m2m2, (4,1,3,1,3), (5,2,1,1,3)
mM7, madd9, 15b6b7, add4, m7, 1b226, 135#9, 15b67, M7#5, m22m2, M7, 2m2m2, add9, 1b224
137, 2m2, 134, aug, 1b3b7, m22, 1b33, 44, 1b37, 22, 1b34, min, maj, m2m2
b72, 6b3, b63, 54, 7b2
(4,4,1,1,1,1) = combinatorial RI (RI4) = 6-37 [up]
(4,4,1,1,1,1)
(5,1,1,1,4), (4,4,1,1,2), (4,4,2,1,1), (5,4,1,1,1), m2m2m2m2, (4,4,1,2,1)
mM7, madd9, m2m22, 7add7, 7#5, add4, add#4, 134b5, 44b2, 2m2m2, m2m2m2, M7#5, m22m2, 136b7
137, maj, 134, aug, 44, 1b33, 13b7, 1b37, 13b5, tt4, 4tt, 2m2, 22, m22, m2m2, min
(4,1,1,4,1,1) = B all combinatorial (P3, P9, I5, R6, R12, R8) = 6-7 [up]
(4,1,4,1,1,1) = combinatorial RI (RI3) = 6-38 [up]
(4,1,4,1,1,1)
(5,1,1,1,4), (4,1,4,1,2), (5,4,1,1,1), monk5, (5,1,1,4,1), (5,1,4,1,1)
madd9, 7add7, add4, M7b5, 134b7, add#4, 134b5, maj7add11, m2m2m2, 4b24, 44b2, M7, 136b7
2m2, 13b5, 4tt, tt4, maj, 134, 44, 13b7, m22, m2m2, min, 137
(5,1,1,2,1,2) = forte class 6-11A = 6-11A [up]
(5,2,1,2,1,1)
(5,1,3,1,2), (5,1,1,2,3), (5,2,2,1,2), (5,1,1,3,2), m22m22, m2m22m2
7sus4, m2m22, 156b7, add4, 1b36b7, M7b5, 1567, dimadd3, 1b347, mM7b5, 15b67, 44b2, m22m2, add9, 1b224
dim, 1b34, maj, 134, 1b33, 44, 1b37, 137, 13b5, tt4, 4tt, 2m2, 1b3b7, m22, 22, m2m2
(5,1,1,2,2,1) = forte class 6-12A = 6-12A [up]
(5,1,2,2,1,1)
m222m2, (5,1,1,2,3), (5,2,2,2,1), (5,1,3,2,1), m2m222, (5,1,1,4,1)
dimadd4, m2m22, 15b6b7, 1b36b7, 7add7, 1567, 1b347, add#4, 134b7, 9no5, mM7b5, maj7add11, 4b24, 44b2, add9
dim, 137, maj, 134, 13b7, 1b37, 44, 13b5, 4tt, tt4, 1b34, 2m2, 1b3b7, m22, 22, m2m2
(5,1,2,1,1,2) = forte class 6-10A = 6-10A [up]
(5,2,1,1,2,1)
(5,1,2,1,3), (5,1,3,1,2), (5,3,1,1,2), (5,1,2,2,2), m22m2m2, 2m2m22
69, 136b7, m2m22, 15b6b7, 1b367, add4, M7b5, dimadd3, mM7b5, 135#9, 9no5, 15b67, 1b226, m22m2, 2m2m2
dim, 137, maj, 134, 44, 13b7, 1b33, 1b37, 13b5, 1b34, tt4, 2m2, m22, 22, min, m2m2
(5,2,2,1,1,1) = combinatorial I (I3) = 6-9B [up]
(5,1,1,1,2,2)
22m2m2, (5,2,2,1,2), (5,2,2,2,1), (5,4,1,1,1), (5,2,3,1,1), 2m2m2m2
7sus4, 7#9no5, 156b7, add4, 1567, add#4, 134b7, 9no5, 134b5, 1b226, 44b2, m2m2m2, 2m2m2, add9
13b5, 4tt, 2m2, maj, 134, 1b3b7, 13b7, m22, 1b33, 44, 22, 1b34, m2m2, tt4
(5,2,1,1,2,1) = forte class 6-10B = 6-10B [up]
(5,1,2,1,1,2)
(5,2,1,1,3), (5,2,2,2,1), (5,3,1,2,1), (5,2,1,3,1), m2m22m2, 2m2m22
madd9, m2m22, 1b367, 1567, min#4, dimadd3, add#4, 134b7, 9no5, 135#9, 15b67, m22m2, 2m2m2, add9, 1b224
dim, 137, maj, 134, 13b7, 1b33, 44, 1b37, 13b5, 4tt, 2m2, 1b3b7, m22, 22, min, m2m2
(5,2,1,1,1,2) = D all combinatorial (P6, I1, RI7) = 6-8 [up]
(5,2,1,1,1,2)
(5,2,2,1,2), (5,2,1,1,3), (5,3,1,1,2), m2m2m22, (5,2,1,2,2), 2m2m2m2
7sus4, 156b7, madd9, m2m22, 15b6b7, add4, 1567, 69, 135#9, 1b226, m2m2m2, 2m2m2, add9, 1b224
137, 2m2, 134, 1b3b7, m22, 1b33, 44, 1b37, 22, min, 1b34, maj, m2m2
b72, 6b3, b63, 54, 7b2
(5,2,1,2,1,1) = forte class 6-11B = 6-11B [up]
(5,1,1,2,1,2)
2m22m2, (5,3,2,1,1), (5,2,1,2,2), (5,2,1,3,1), (5,2,3,1,1), m22m2m2
7sus4, dimadd4, 7#9no5, madd9, 15b6b7, 1b367, min#4, 134b7, 69, 15b67, 1b226, 44b2, m22m2, 2m2m2, 156b7
dim, 137, 134, 13b7, 44, 1b33, 1b37, 1b34, tt4, 4tt, 2m2, 1b3b7, m22, 22, min, m2m2
(5,1,2,2,1,1) = forte class 6-12B = 6-12B [up]
(5,1,1,2,2,1)
m222m2, 22m2m2, (5,3,2,1,1), (5,1,2,3,1), (5,1,2,2,2), (5,1,4,1,1)
69, dimadd4, 7#9no5, 136b7, 15b6b7, 1b36b7, 1567, M7b5, min#4, 9no5, 134b5, maj7add11, 2m2m2, 4b24, 44b2
dim, 137, 134, 13b7, 44, 1b33, 13b5, tt4, 4tt, 1b34, 2m2, 1b3b7, m22, 22, min, m2m2
(5,1,2,1,2,1) = alternating hexamirror = 6-13 [up]
(5,1,2,1,2,1)
(5,1,2,1,3), (5,3,1,2,1), (5,1,3,2,1), (5,1,2,3,1), m22m22, 2m22m2
dimadd4, 7#9no5, 136b7, 156b7, 1b36b7, 1b367, min#4, dimadd3, 1b347, add#4, 135#9, mM7b5, 4b24, m22m2
dim, 13b5, tt4, 2m2, maj, 1b3b7, 13b7, m22, 1b33, 1b37, 4tt, 1b34, min
(5,1,1,1,2,2) = combinatorial I (I11) = 6-9A [up]
(5,2,2,1,1,1)
(5,1,1,1,4), (5,1,1,3,2), (5,2,1,2,2), m2m2m22, m2m222, (5,1,2,2,2)
69, 156b7, madd9, 136b7, m2m22, 15b6b7, 7add7, 7sus4, M7b5, 1b347, 9no5, 44b2, m2m2m2, 1b224
13b5, 4tt, tt4, 2m2, 1b3b7, 13b7, 22, 44, 1b37, m22, min, 1b34, m2m2, 137
(5,1,3,1,1,1) = combinatorial I (I3) = 6-5B [up]
(5,1,1,1,3,1)
(6,3,1,1,1), (5,1,3,1,2), (5,4,1,1,1), (5,1,3,2,1), (6,1,3,1,1), (5,1,4,1,1)
dimadd4, add4, M7b5, dimadd3, 1b347, add#4, mM7b5, 134b5, maj7add11, 15b67, 1b226, m2m2m2, 4b24, 44b2
dim, 13b5, tt4, 2m2, 134, 1b37, 1b33, 44, m22, 4tt, maj, 1b34, m2m2, 137
(5,1,1,3,1,1) = double cluster hexamirror = 6-6 [up]
(5,1,1,3,1,1)
(5,1,1,3,2), (6,1,1,3,1), (6,1,3,1,1), (5,2,3,1,1), (5,1,1,4,1), (5,1,4,1,1)
7sus4, 7#9no5, 7add7, M7b5, 1b347, 134b7, 15b67, 134b5, 1b226, maj7add11, 4b24, 44b2, 1b224
13b5, 137, tt4, 134, 1b3b7, 13b7, 1b33, 44, 1b37, 4tt, 1b34, m2m2
(5,1,1,1,3,1) = combinatorial I (I11) = 6-5A [up]
(5,1,3,1,1,1)
(5,1,1,1,4), (5,1,2,3,1), (6,1,1,3,1), (5,2,1,3,1), (6,1,1,1,3), (5,1,1,4,1)
7#9no5, madd9, 1b367, 1b36b7, 7add7, min#4, 134b7, 15b67, maj7add11, 4b24, 44b2, m2m2m2, 136b7, 1b224
dim, 137, tt4, 2m2, 134, 1b3b7, 1b33, 44, m22, 1b37, 13b7, 4tt, min, m2m2
(5,3,1,1,1,1) = forte class 6-36B = 6-36B [up]
(5,1,1,1,1,3)
(6,3,1,1,1), (5,3,2,1,1), (5,3,1,2,1), (5,4,1,1,1), m2m2m2m2, (5,3,1,1,2)
69, dimadd4, m2m22, add4, min#4, dimadd3, add#4, 134b5, 1b226, 135#9, 44b2, 2m2m2, m22m2, m2m2m2
dim, 13b5, tt4, 2m2, 134, 1b34, 1b33, 1b37, 44, m22, 22, 4tt, min, maj, m2m2
(5,1,1,1,1,3) = forte class 6-36A = 6-36A [up]
(5,3,1,1,1,1)
(5,1,1,2,3), (5,2,1,1,3), (5,1,1,1,4), m2m2m2m2, (6,1,1,1,3), (5,1,2,1,3)
madd9, 136b7, m2m22, 1b367, 1b36b7, 7add7, 135#9, mM7b5, 44b2, 2m2m2, m22m2, m2m2m2, add9, 1b224
dim, 137, tt4, 2m2, 1b3b7, 13b7, 1b33, 44, 1b37, m22, 22, 4tt, min, maj, m2m2
(6,1,1,1,2,1) = forte class 6-3A = 6-3A [up]
(6,1,2,1,1,1)
m222m2, 2m22m2, (6,1,1,3,1), m2m2m22, (6,1,1,1,3), m2m22m2
dimadd4, 156b7, 7#9no5, m2m22, 1b367, 1b36b7, 7add7, 1567, maj7add11, 15b67, 15b6b7, m22m2, m2m2m2, 1b224
dim, 137, tt4, 2m2, 134, 1b3b7, 13b7, 1b33, 1b37, m22, 22, 4tt, 1b34, m2m2
(6,1,1,1,1,2) = combinatorial I (I11) = 6-2A [up]
(6,2,1,1,1,1)
(6,1,1,1,3), m2m2m22, m2m2m2m2, m22m22, m2m222, 2m2m22
156b7, m2m22, 1b36b7, 15b6b7, 7add7, 1b367, 1b347, dimadd3, 9no5, m2m2m2, m22m2, 2m2m2, 1b224
dim, 13b5, 137, 2m2, 1b3b7, 13b7, m22, 1b33, 1b37, 22, 4tt, 1b34, m2m2
(6,2,1,1,1,1) = combinatorial I (I1) = 6-2B [up]
(6,1,1,1,1,2)
(6,3,1,1,1), 22m2m2, m2m2m2m2, 2m2m2m2, 2m22m2, 2m2m22
dimadd4, 7#9no5, m2m22, 156b7, 1b367, 1567, dimadd3, 9no5, 134b5, 1b226, m2m2m2, m22m2, 2m2m2
dim, 13b5, 1b34, tt4, 2m2, 134, 1b3b7, 13b7, m22, 1b33, 22, 1b37, m2m2
(6,1,2,1,1,1) = forte class 6-3B = 6-3B [up]
(6,1,1,1,2,1)
m222m2, (6,3,1,1,1), (6,1,3,1,1), m22m22, 2m2m2m2, m22m2m2
dimadd4, 156b7, 15b6b7, 1b36b7, 1567, dimadd3, 1b347, 134b5, maj7add11, 15b67, 1b226, m2m2m2, m22m2, 2m2m2
dim, 13b5, 1b34, tt4, 2m2, 134, 1b3b7, m22, 1b33, 22, 1b37, 4tt, m2m2, 137
(6,1,1,2,1,1) = combinatorial RI (RI6) = 6-4 [up]
(6,1,1,2,1,1)
22m2m2, (6,1,3,1,1), (6,1,1,3,1), m2m222, m2m22m2, m22m2m2
7#9no5, m2m22, 15b6b7, 7add7, 1567, 1b347, 134b5, maj7add11, 9no5, 15b67, 1b226, m22m2, 2m2m2, 1b224
13b5, 137, tt4, 2m2, 134, 1b3b7, 13b7, m22, 1b33, 1b37, 22, 4tt, 1b34, m2m2
(7,1,1,1,1,1) = A all combinatorial (P6, I11, RI5, RI11) = 6-1 [up]
Go to n-chords, for n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
melminor = (2,2,2,2,1,2,1) = melodic minor ascending scale = 7-34 [up]
melminor
(3,1,2,2,2,2), (4,1,2,1,2,2), (3,2,1,2,2,2), (3,2,2,2,2,1), (3,2,2,2,1,2), (4,2,2,1,2,1), (4,2,1,2,1,2)
(5,2,2,1,2), (5,2,1,2,2), m22m22, (4,3,1,2,2), (4,3,2,1,2), 2m22m2, (4,4,1,2,1), (5,1,2,2,2), augpenta, penta9, (4,1,2,3,2), (4,1,3,2,2), (4,2,2,3,1), (4,2,3,2,1), penta, (4,2,2,1,3), (4,2,1,2,3), (5,2,2,2,1), (4,2,3,1,2), (4,2,1,3,2)
69, 7#9no5, madd9, 156b7, 1b367, add4, dimadd3, 1b347, 9no5, m7, m22m2, M7#5, 7sus4, dimadd4, mM7, 136b7, 15b6b7, M7b5, 7#5, 1b36b7, 1567, 7b5, 134b7, add#4, m7b5, 7, add9
dim, 137, maj, 134, aug, 1b33, 1b37, 13b7, 44, 13b5, 1b34, 4tt, tt4, 2m2, 1b3b7, m22, 22, min
(2,2,2,2,2,1,1) = Neapolitan-major mode = 7-33 [up]
(2,2,2,2,2,1,1)
(3,2,2,2,2,1), augscale, (3,1,2,2,2,2), (4,2,2,1,1,2), (4,2,1,1,2,2), (4,1,1,2,2,2), (4,2,2,2,1,1)
m2m222, (4,3,1,2,2), 22m2m2, (4,4,2,1,1), (5,1,2,2,2), augpenta, 2m2m22, penta9, (4,4,1,1,2), (4,1,3,2,2), (4,2,2,3,1), (4,2,2,1,3), (4,2,3,1,2), (4,2,1,3,2), (5,2,2,2,1), (4,2,4,1,1)
69, 7#9no5, m2m22, 1b367, dimadd3, 1b347, 9no5, 134b5, M7#5, mM7, 136b7, 15b6b7, 7#5, 1567, 7add7, M7b5, 7b5, 134b7, add#4, m7b5, 2m2m2, 7, add9
diatonic = (2,2,2,1,2,2,1) = major scale = 7-35 [up]
diatonic
(3,2,1,2,2,2), (4,1,2,2,2,1), (4,1,2,2,1,2), (3,2,2,1,2,2), (3,2,2,2,1,2), (4,2,1,2,2,1)
penta9, (5,2,2,1,2), (4,1,2,2,3), (4,1,2,3,2), (4,2,3,2,1), (5,2,1,2,2), penta, (4,3,2,1,2), m222m2, (4,2,1,2,3), (4,1,4,1,2), (4,3,2,2,1), (5,2,2,2,1), (5,1,2,2,2), monk5
69, madd9, 156b7, add4, 9no5, m7, 7sus4, dimadd4, 136b7, 15b6b7, 1b36b7, 1567, M7b5, 134b7, add#4, m7b5, maj7add11, 7, M7, add9
dim, 13b5, 137, tt4, maj, 134, 2m2, 1b3b7, m22, 44, 13b7, 22, 4tt, 1b34, min
(3,1,2,2,2,1,1) = forte class 7-30B = 7-30B [up]
(3,1,1,2,2,2,1)
(3,1,2,2,2,2), (4,1,2,2,2,1), (4,2,1,1,3,1), (3,3,2,2,1,1), (4,1,1,3,1,2), (3,1,3,1,2,2), (4,2,2,2,1,1)
(4,3,1,2,2), 22m2m2, (4,3,2,2,1), (4,1,4,1,2), (6,1,1,3,1), (4,4,2,1,1), (5,1,2,2,2), augpenta, (4,3,1,3,1), penta9, (4,1,2,2,3), (5,2,1,1,3), (4,2,2,3,1), (3,3,2,3,1), (4,2,3,1,2), (5,1,3,1,2), (5,2,2,2,1), monk5, (4,1,1,3,3), (4,2,4,1,1)
69, 7#9no5, madd9, add4, dimadd3, m7, 9no5, 15b67, 134b5, M7#5, 1b224, 136b7, 15b6b7, 7#5, 1567, 7add7, M7b5, 7b5, add#4, 134b7, 135#9, maj7add11, mM7b5, m7b5, 2m2m2, 7, M7, add9
(3,1,2,1,1,2,2) = forte class 7-26A = 7-26A [up]
(3,2,2,1,1,2,1)
(3,1,2,2,2,2), (3,3,1,1,2,2), (3,1,3,1,2,2), (3,2,3,1,2,1), (5,1,2,1,1,2), (4,2,1,1,2,2), (4,3,1,2,1,1)
m2m222, m22m2m2, (4,3,1,2,2), (5,3,1,2,1), (5,1,2,2,2), (4,4,2,1,1), augpenta, 2m2m22, (4,3,3,1,1), (4,3,1,3,1), penta9, (5,3,1,1,2), (4,1,2,2,3), (4,2,2,3,1), (3,3,2,3,1), (5,1,2,1,3), (4,2,3,1,2), (5,1,3,1,2), (4,2,1,3,2), (3,3,1,3,2)
69, 7#9no5, m2m22, 1b367, add4, dimadd3, 1b347, 9no5, 1b226, 15b67, m7, M7#5, m22m2, 136b7, 15b6b7, 7add7, 7#5, M7b5, 7b5, min#4, add#4, mM7b5, 135#9, m7b5, 2m2m2, M7, 7, add9
(3,2,1,2,1,2,1) = diminished scale = 7-31B [up]
(3,1,2,1,2,1,2)
(4,2,1,2,1,2), MttM, (3,2,1,2,3,1), (5,1,2,1,2,1), (3,2,3,1,2,1), (3,3,2,1,2,1)
(5,1,2,3,1), (5,1,3,2,1), m22m22, (3,3,2,3,1), (3,3,3,2,1), (4,2,1,2,3), (4,3,2,1,2), 2m22m2, (5,1,2,1,3), (5,3,1,2,1), (4,2,1,3,2), (4,2,3,1,2), (3,3,1,3,2)
7#9no5, 156b7, 1b367, dimadd3, 1b347, m7, 4b24, m22m2, dim7, dimadd4, 136b7, 1b36b7, 7b5, min#4, add#4, mM7b5, 135#9, m7b5, 7
dim, 13b5, tt4, maj, 2m2, 1b3b7, m22, 1b33, 13b7, 1b37, 4tt, 1b34, min
harmminor = (3,1,2,1,2,2,1) = harmonic minor scale = 7-32A [up]
harmmajor
(4,1,3,1,2,1), (4,1,2,1,2,2), (3,2,1,3,1,2), (3,3,1,2,1,2), (3,3,1,2,2,1), (3,2,2,1,3,1), (4,2,1,2,2,1)
(5,2,1,2,2), m22m22, (4,3,1,2,2), m222m2, (4,3,2,2,1), (5,3,1,2,1), (4,4,1,2,1), (4,1,2,3,2), (4,1,3,2,2), (4,2,3,2,1), (5,2,1,3,1), (3,3,3,2,1), (4,2,2,1,3), (4,2,1,2,3), (5,1,3,1,2), (4,1,3,3,1), (3,3,3,1,2), (3,3,1,3,2), (4,1,3,1,3), monk5
69, madd9, 156b7, 1b367, add4, dimadd3, 1b347, m7, 15b67, m22m2, M7#5, 7sus4, dimadd4, mM7, dim7, 15b6b7, 7#5, 1b36b7, 1567, M7b5, min#4, 134b7, add#4, mM7b5, m7b5, maj7add11, 135#9, 7, M7
dim, 1b34, maj, 134, aug, 44, 1b33, 13b7, 1b37, 137, 13b5, tt4, 4tt, 2m2, 1b3b7, m22, 22, min
(3,1,1,2,1,2,2) = forte class 7-27A = 7-27A [up]
(3,2,2,1,2,1,1)
(5,1,1,2,1,2), (4,1,2,1,2,2), (4,3,1,1,2,1), (3,1,3,1,2,2), (3,2,3,1,1,2), (3,2,2,3,1,1), (3,2,2,1,2,2)
(5,2,2,1,2), m22m22, (5,2,1,2,2), m2m22m2, (4,3,1,2,2), (4,3,2,2,1), (4,4,1,2,1), (4,3,1,3,1), (5,3,1,1,2), (4,1,2,2,3), (4,3,1,1,3), (4,1,3,2,2), (4,1,2,3,2), (4,2,2,3,1), (5,2,3,1,1), (3,3,2,3,1), penta, (5,1,1,2,3), (5,1,3,1,2), (5,1,1,3,2)
69, 7#9no5, madd9, m2m22, 156b7, add4, dimadd3, 1b347, 1b226, m7, 15b67, m22m2, M7#5, 44b2, 1b224, 7sus4, mM7, 15b6b7, 1567, 1b36b7, 7#5, M7b5, 134b7, 135#9, mM7b5, M7, 7, add9
(3,2,1,1,2,2,1) = forte class 7-28B = 7-28B [up]
(3,1,2,2,1,1,2)
(3,3,2,1,1,2), MttM, (3,3,1,2,2,1), (4,1,3,2,1,1), (3,2,2,2,2,1), (4,2,1,1,2,2), (5,1,1,2,2,1)
m2m222, m222m2, (4,3,1,2,2), (5,3,2,1,1), (4,4,2,1,1), augpenta, 2m2m22, penta9, (4,1,3,2,2), (5,1,3,2,1), (3,3,3,2,1), (4,2,2,1,3), (5,1,1,2,3), (4,1,3,3,1), (4,2,1,3,2), (5,2,2,2,1), (3,3,3,1,2), (5,1,1,4,1)
69, m2m22, 1b367, 1b347, dimadd3, 9no5, M7#5, 4b24, 44b2, dimadd4, mM7, dim7, 15b6b7, 7#5, 1b36b7, 7add7, 7b5, 1567, min#4, add#4, 134b7, mM7b5, maj7add11, m7b5, 2m2m2, 7, add9
(3,2,2,1,1,1,2) = tritone major heptachord = 7-23B [up]
(3,2,1,1,1,2,2)
(5,2,1,1,1,2), (3,3,2,2,1,1), (5,2,2,1,1,1), (3,2,2,1,2,2), (4,1,1,1,2,3), (3,2,2,2,1,2), (3,2,3,1,1,2)
(5,2,2,1,2), 2m2m2m2, (5,2,1,2,2), 22m2m2, (4,3,2,2,1), (5,4,1,1,1), m2m2m22, penta9, (5,3,1,1,2), (5,2,1,1,3), (4,1,2,2,3), (4,1,2,3,2), (5,2,3,1,1), penta, (3,3,2,3,1), (5,1,1,2,3), (4,2,1,2,3), (5,2,2,2,1), (4,1,1,3,3)
69, 7#9no5, madd9, m2m22, 156b7, add4, 1b226, 9no5, m7, 134b5, 44b2, 1b224, 7sus4, 15b6b7, 1b36b7, 1567, add#4, 134b7, 135#9, m7b5, mM7b5, m2m2m2, 2m2m2, 7, M7, add9
dim, 1b34, maj, 134, 1b37, 1b33, 44, 13b7, 137, 13b5, 4tt, tt4, 2m2, 1b3b7, m22, 22, m2m2, min
(3,2,1,1,2,1,2) = forte class 7-25A = 7-25A [up]
(3,2,1,2,1,1,2)
(3,2,3,2,1,1), (3,2,1,3,1,2), (3,3,1,2,1,2), (5,1,1,2,1,2), (3,2,2,2,1,2), (5,2,1,1,2,1), (3,3,2,1,1,2)
(5,2,2,1,2), m22m22, m2m22m2, (5,3,2,1,1), (5,3,1,2,1), 2m2m22, penta9, (5,2,1,1,3), (4,1,2,3,2), (4,2,3,2,1), (5,2,1,3,1), penta, (3,3,3,2,1), (4,2,1,2,3), (5,1,1,2,3), (5,1,3,1,2), (5,1,1,3,2), (5,2,2,2,1), (3,3,1,3,2), (3,3,3,1,2)
69, madd9, m2m22, 156b7, 1b367, add4, 1b347, dimadd3, 9no5, 15b67, m7, m22m2, 44b2, 1b224, 7sus4, dimadd4, dim7, 1b36b7, M7b5, 1567, min#4, 134b7, add#4, mM7b5, m7b5, 135#9, 2m2m2, 7, add9
dim, 1b34, maj, 134, 1b37, 1b33, 13b7, 44, 137, 13b5, tt4, 4tt, 2m2, 1b3b7, m22, 22, min, m2m2
(3,2,1,2,1,1,2) = forte class 7-25B = 7-25B [up]
(3,2,1,1,2,1,2)
(3,3,2,1,1,2), (5,2,1,2,1,1), (3,2,1,3,1,2), (3,2,1,2,2,2), (3,2,3,1,1,2), (5,1,2,1,1,2), (3,3,2,1,2,1)
(5,2,1,2,2), m22m2m2, (4,3,2,1,2), 2m22m2, (5,3,2,1,1), (5,1,2,2,2), 2m2m22, penta9, (5,3,1,1,2), (4,1,2,3,2), (5,2,1,3,1), (4,2,3,2,1), penta, (5,2,3,1,1), (3,3,2,3,1), (3,3,3,2,1), (5,1,1,2,3), (5,1,2,1,3), (5,1,3,1,2), (3,3,3,1,2)
69, 7#9no5, madd9, m2m22, 156b7, 1b367, add4, dimadd3, 9no5, 1b226, m7, 15b67, 44b2, m22m2, 7sus4, dimadd4, dim7, 136b7, 15b6b7, 1b36b7, M7b5, min#4, 134b7, 135#9, m7b5, mM7b5, 2m2m2, 7, add9
dim, 1b34, maj, 134, 1b37, 1b33, 13b7, 44, 137, 13b5, tt4, 4tt, 2m2, 1b3b7, m22, 22, min, m2m2
(3,2,2,1,1,2,1) = forte class 7-26B = 7-26B [up]
(3,1,2,1,1,2,2)
(3,2,2,2,2,1), (4,1,1,2,1,3), (3,3,2,2,1,1), (3,2,2,1,3,1), (3,2,3,1,2,1), (4,2,2,1,1,2), (5,2,1,1,2,1)
m2m22m2, 22m2m2, (4,3,2,2,1), (5,3,1,2,1), augpenta, 2m2m22, penta9, (5,2,1,1,3), (4,4,1,1,2), (4,1,3,2,2), (5,2,1,3,1), (3,3,2,3,1), (5,1,2,1,3), (4,2,2,1,3), (4,2,1,3,2), (4,2,3,1,2), (5,2,2,2,1), (3,3,1,3,2), (4,1,1,3,3), (4,1,3,1,3)
69, 7#9no5, madd9, m2m22, 1b367, dimadd3, 1b347, 9no5, m7, 134b5, 15b67, m22m2, 1b224, mM7, 136b7, 7#5, 7b5, 1567, min#4, 134b7, add#4, m7b5, mM7b5, 135#9, 2m2m2, 7, M7, add9
harmmajor = (3,1,2,2,1,2,1) = harmonic major scale = 7-32B [up]
harmminor
(3,3,1,2,2,1), (3,2,1,3,1,2), (4,1,2,2,1,2), (4,1,2,1,3,1), (3,1,3,1,2,2), (4,2,2,1,2,1), (3,3,2,1,2,1)
(5,2,2,1,2), m222m2, (4,3,1,2,2), (4,3,2,1,2), 2m22m2, (4,1,4,1,2), (4,4,1,2,1), (4,3,1,3,1), (4,1,2,2,3), (4,1,2,3,2), (4,2,2,3,1), (4,2,3,2,1), (5,2,1,3,1), (3,3,2,3,1), (3,3,3,2,1), (4,2,2,1,3), (5,1,2,1,3), (4,1,3,3,1), (5,1,3,1,2), (3,3,3,1,2)
7#9no5, madd9, 156b7, 1b367, add4, dimadd3, m7, 15b67, m22m2, M7#5, 7sus4, dimadd4, dim7, mM7, 136b7, 15b6b7, 7#5, 1b36b7, 1567, M7b5, min#4, 134b7, 135#9, maj7add11, m7b5, mM7b5, M7, 7, add9
dim, 137, maj, 134, aug, 1b33, 1b37, 13b7, 44, 13b5, 1b34, tt4, 4tt, 2m2, 1b3b7, m22, 22, min
(3,1,1,1,2,2,2) = forte class 7-24A = 7-24A [up]
(3,2,2,2,1,1,1)
(3,1,2,2,2,2), (4,3,1,1,1,2), (3,2,1,2,2,2), (4,2,3,1,1,1), (3,2,2,3,1,1), (5,1,1,1,2,2), (4,1,1,2,2,2)
(5,2,1,2,2), m2m222, (4,3,1,2,2), (4,3,2,1,2), (5,1,1,1,4), m2m2m22, augpenta, (5,1,2,2,2), penta9, (4,4,1,1,2), (4,3,1,1,3), (4,1,3,2,2), (4,2,3,2,1), (4,2,2,3,1), (5,2,3,1,1), penta, (6,3,1,1,1), (4,2,3,1,2), (5,1,1,3,2), (4,2,4,1,1)
69, 7#9no5, madd9, m2m22, 156b7, dimadd3, 1b347, 9no5, m7, 1b226, 134b5, M7#5, 44b2, 1b224, 7sus4, mM7, dimadd4, 136b7, 15b6b7, 7#5, 7add7, M7b5, 7b5, 134b7, m7b5, 7, m2m2m2, add9
(3,2,1,2,2,1,1) = forte class 7-29B = 7-29B [up]
(3,1,1,2,2,1,2)
(3,2,3,2,1,1), (3,3,2,2,1,1), (3,2,1,2,2,2), (5,1,2,2,1,1), (4,1,1,3,2,1), (3,2,1,2,3,1), (4,2,1,2,2,1)
(5,2,1,2,2), m222m2, (4,3,2,1,2), 22m2m2, (4,3,2,2,1), (5,3,2,1,1), (5,1,2,2,2), penta9, (5,2,1,1,3), (5,1,3,2,1), (5,1,2,3,1), (4,2,3,2,1), penta, (3,3,2,3,1), (4,2,1,2,3), (5,1,1,3,2), (3,3,1,3,2), (4,1,1,3,3), (5,1,4,1,1), monk5
69, 7#9no5, madd9, 156b7, 1b347, 9no5, m7, 134b5, 44b2, 4b24, 1b224, 7sus4, dimadd4, 136b7, 15b6b7, 1b36b7, 1567, M7b5, min#4, add#4, 135#9, m7b5, mM7b5, maj7add11, 2m2m2, 7, M7, add9
dim, 1b34, maj, 134, 1b37, 1b33, 44, 13b7, 137, 13b5, 4tt, tt4, 2m2, 1b3b7, m22, 22, m2m2, min
(3,2,2,2,1,1,1) = mystic heptaachord = 7-24B [up]
(3,1,1,1,2,2,2)
(3,2,2,2,2,1), (4,2,1,1,1,3), (5,2,2,1,1,1), (3,2,2,2,1,2), (4,1,1,1,3,2), (3,2,2,3,1,1), (4,2,2,2,1,1)
(5,2,2,1,2), 2m2m2m2, 22m2m2, (5,4,1,1,1), (4,4,2,1,1), augpenta, penta9, (6,1,1,1,3), (4,3,1,1,3), (4,1,3,2,2), (4,1,2,3,2), (4,2,2,3,1), (5,2,3,1,1), penta, (4,2,2,1,3), (4,2,1,2,3), (4,2,1,3,2), (5,1,1,3,2), (5,2,2,2,1), (4,2,4,1,1)
69, 7#9no5, 156b7, 1b367, add4, 1b347, 1b226, 9no5, 134b5, m7, M7#5, 44b2, 1b224, 7sus4, mM7, 7#5, 7b5, 1b36b7, 7add7, 1567, M7b5, add#4, 134b7, m7b5, 2m2m2, m2m2m2, 7, add9
(3,2,2,1,2,1,1) = modified blues = 7-27B [up]
(3,1,1,2,1,2,2)
(3,2,3,2,1,1), (5,2,1,2,1,1), (4,1,2,1,1,3), (3,2,2,1,3,1), (4,2,2,1,2,1), (3,2,2,3,1,1), (3,2,2,1,2,2)
(5,2,2,1,2), (5,2,1,2,2), m22m2m2, 2m22m2, (4,3,2,2,1), (5,3,2,1,1), (4,4,1,2,1), (5,2,1,1,3), (4,1,2,2,3), (4,3,1,1,3), (4,1,3,2,2), (4,2,3,2,1), (4,2,2,3,1), (5,2,1,3,1), (5,2,3,1,1), penta, (4,2,2,1,3), (5,1,1,3,2), (3,3,1,3,2), (4,1,3,1,3)
69, 7#9no5, madd9, 156b7, 1b367, add4, 1b347, 1b226, m7, 15b67, m22m2, M7#5, 44b2, 1b224, 7sus4, dimadd4, mM7, 15b6b7, 7#5, 1567, M7b5, min#4, 134b7, m7b5, 135#9, 2m2m2, M7, add9
(3,1,2,2,1,1,2) = forte class 7-28A = 7-28A [up]
(3,2,1,1,2,2,1)
(3,1,2,3,1,2), (4,1,1,2,3,1), (3,3,1,2,2,1), (3,1,2,2,2,2), (5,1,2,2,1,1), (4,2,2,1,1,2), (3,3,2,1,1,2)
(4,3,1,2,2), m222m2, 22m2m2, (5,3,2,1,1), (5,1,2,2,2), augpenta, 2m2m22, penta9, (4,4,1,1,2), (4,2,2,3,1), (5,1,2,3,1), (3,3,3,2,1), (4,2,2,1,3), (5,1,1,2,3), (4,1,3,3,1), (4,2,3,1,2), (3,3,3,1,2), (5,1,4,1,1)
69, 7#9no5, m2m22, 1b367, dimadd3, 9no5, 134b5, M7#5, 4b24, 44b2, dimadd4, dim7, mM7, 136b7, 15b6b7, 7#5, 1567, 1b36b7, 7b5, M7b5, min#4, mM7b5, maj7add11, m7b5, 2m2m2, 7, add9
(3,1,1,2,2,2,1) = Neapolitan-minor mode = 7-30A [up]
(3,1,2,2,2,1,1)
(3,2,2,2,2,1), (4,1,2,2,2,1), (3,2,2,1,3,1), (4,1,3,1,1,2), (3,3,1,1,2,2), (4,2,1,3,1,1), (4,1,1,2,2,2)
m2m222, (4,3,2,2,1), (4,1,4,1,2), (6,1,3,1,1), augpenta, (5,1,2,2,2), (4,3,3,1,1), penta9, (5,3,1,1,2), (4,1,2,2,3), (4,4,1,1,2), (4,1,3,2,2), (5,2,1,3,1), (4,2,2,1,3), (5,2,2,2,1), (4,2,1,3,2), (3,3,1,3,2), (4,1,3,1,3), monk5, (4,2,4,1,1)
69, madd9, m2m22, 1b367, add4, 1b347, 1b226, 9no5, m7, 15b67, 134b5, mM7, 136b7, 15b6b7, 7#5, 1567, 7add7, M7b5, 7b5, min#4, 134b7, add#4, m7b5, 135#9, maj7add11, 7, M7, add9
(3,1,2,1,2,1,2) = alternating heptachord = 7-31A [up]
(3,2,1,2,1,2,1)
(3,1,2,3,1,2), (3,2,1,2,3,1), (3,3,1,2,1,2), (5,1,2,1,2,1), (3,2,3,1,2,1), (4,2,1,2,1,2)
(5,1,2,3,1), (5,1,3,2,1), m22m22, (3,3,2,3,1), (4,3,2,1,2), 2m22m2, (4,2,1,2,3), (5,1,2,1,3), (5,3,1,2,1), (4,2,3,1,2), (4,2,1,3,2), (3,3,3,1,2), (3,3,1,3,2)
7#9no5, 156b7, 1b367, dimadd3, 1b347, m7, 4b24, m22m2, dimadd4, dim7, 136b7, 1b36b7, 7b5, min#4, add#4, mM7b5, 135#9, m7b5, 7
dim, 13b5, tt4, maj, 2m2, 1b3b7, m22, 1b33, 13b7, 1b37, 4tt, 1b34, min
(3,1,1,2,2,1,2) = forte class 7-29A = 7-29A [up]
(3,2,1,2,2,1,1)
(4,1,2,3,1,1), (3,2,1,2,3,1), (3,2,2,2,1,2), (3,3,1,1,2,2), (3,2,3,1,1,2), (4,1,2,2,1,2), (5,1,1,2,2,1)
(5,2,2,1,2), m2m222, (4,3,2,1,2), m222m2, (4,1,4,1,2), (4,3,3,1,1), penta9, (5,3,1,1,2), (4,1,2,2,3), (4,1,2,3,2), (5,1,2,3,1), (5,1,3,2,1), (5,2,3,1,1), penta, (3,3,2,3,1), (4,2,1,2,3), (5,1,1,2,3), (5,2,2,2,1), (3,3,1,3,2), (5,1,1,4,1)
69, 7#9no5, m2m22, 156b7, add4, 1b347, 9no5, 1b226, m7, 4b24, 44b2, 7sus4, dimadd4, 136b7, 15b6b7, 1b36b7, 7add7, 1567, min#4, add#4, 134b7, mM7b5, m7b5, maj7add11, 135#9, M7, 7, add9
dim, 137, maj, 134, 1b33, 1b37, 13b7, 44, 13b5, 1b34, tt4, 4tt, 2m2, 1b3b7, m22, 22, m2m2, min
(3,2,1,1,1,2,2) = forte class 7-23A = 7-23A [up]
(3,2,2,1,1,1,2)
(3,2,3,2,1,1), (4,3,2,1,1,1), (3,2,1,2,2,2), (3,2,2,1,2,2), (3,3,1,1,2,2), (5,1,1,1,2,2), (5,2,1,1,1,2)
(5,2,1,2,2), m2m222, 2m2m2m2, (4,3,2,1,2), (5,1,1,1,4), (4,3,2,2,1), (5,3,2,1,1), m2m2m22, (5,1,2,2,2), (4,3,3,1,1), penta9, (5,3,1,1,2), (5,2,1,1,3), (4,1,2,2,3), (4,2,3,2,1), penta, (5,2,2,1,2), (5,1,1,3,2), (3,3,1,3,2)
69, madd9, m2m22, 156b7, add4, 1b347, 9no5, 1b226, m7, 44b2, 1b224, 7sus4, dimadd4, 136b7, 15b6b7, 7add7, 1567, M7b5, min#4, 135#9, m7b5, m2m2m2, 7, 2m2m2, M7, add9
dim, 1b34, maj, 134, 1b37, 13b7, 1b33, 44, 137, 13b5, tt4, 4tt, 2m2, 1b3b7, m22, 22, m2m2, min
(3,1,3,1,1,2,1) = forte class 7-21A = 7-21A [up]
(3,1,3,1,2,1,1)
(3,2,2,1,3,1), (4,1,1,2,1,3), (4,1,2,1,3,1), (4,3,1,1,2,1), (4,1,3,1,1,2), (3,3,1,3,1,1), (3,1,3,1,3,1)
m2m22m2, (4,3,2,2,1), (4,1,4,1,2), (4,4,1,2,1), (6,1,3,1,1), (4,3,1,3,1), (5,3,1,1,2), (4,3,1,1,3), (4,4,1,1,2), (4,1,3,2,2), (5,2,1,3,1), (4,2,2,1,3), (5,1,2,1,3), (4,1,3,3,1), (3,3,1,3,2), (4,1,1,3,3), (4,1,3,1,3)
69, madd9, m2m22, 1b367, add4, 1b347, 1b226, m7, 134b5, 15b67, m22m2, M7#5, 1b224, mM7, 136b7, 7#5, 1567, min#4, 134b7, maj7add11, m7b5, mM7b5, 135#9, M7
(3,3,1,1,1,2,1) = Debussy's heptatonic = 7-16A [up]
(3,3,1,2,1,1,1)
(4,1,1,2,1,3), (3,3,1,2,2,1), (6,1,1,1,2,1), (3,3,1,1,3,1), (3,3,3,1,1,1), (4,3,1,1,1,2), (3,3,2,1,2,1)
m222m2, m2m22m2, (4,3,1,2,2), (4,3,2,1,2), 2m22m2, (6,1,1,3,1), m2m2m22, (4,3,3,1,1), (6,1,1,1,3), (4,3,1,1,3), (4,4,1,1,2), (3,3,2,3,1), (3,3,3,2,1), (4,2,2,1,3), (5,1,2,1,3), (6,3,1,1,1), (4,1,3,3,1), (3,3,3,1,2), (4,1,3,1,3), (4,1,1,3,3)
7#9no5, m2m22, 156b7, 1b367, dimadd3, m7, 1b226, 134b5, 15b67, m22m2, M7#5, 1b224, dimadd4, mM7, dim7, 136b7, 15b6b7, 7add7, 1b36b7, 7#5, 1567, min#4, maj7add11, m7b5, 135#9, mM7b5, 7, m2m2m2, M7
dim, 1b34, maj, 134, aug, 1b33, 1b37, 13b7, 137, 13b5, tt4, 4tt, 2m2, 1b3b7, 22, m22, min, m2m2
(3,1,2,1,3,1,1) = double harmonic scale = 7-22 [up]
(3,1,2,1,3,1,1)
(4,1,3,1,2,1), (4,1,1,3,1,2), (4,1,2,1,3,1), (3,3,1,1,3,1), (3,2,3,1,2,1), (3,3,1,3,1,1), (4,2,1,3,1,1)
(4,1,4,1,2), (5,3,1,2,1), (4,4,1,2,1), (6,1,1,3,1), (6,1,3,1,1), (4,3,1,3,1), (4,3,3,1,1), (4,3,1,1,3), (5,2,1,3,1), (3,3,2,3,1), (5,1,2,1,3), (5,1,3,1,2), (4,2,3,1,2), (4,2,1,3,2), (4,1,3,3,1), (3,3,1,3,2), (4,1,3,1,3), (4,1,1,3,3), (4,2,4,1,1), monk5
7#9no5, madd9, 1b367, add4, dimadd3, 1b347, 1b226, 15b67, 134b5, m7, m22m2, M7#5, 1b224, mM7, 136b7, 7add7, 7b5, M7b5, min#4, add#4, 134b7, 135#9, m7b5, mM7b5, maj7add11, 7, M7
dim, 137, maj, 134, aug, 44, 1b33, 1b37, 13b7, 13b5, 4tt, tt4, 1b34, 2m2, 1b3b7, m22, m2m2, min
(3,1,3,1,2,1,1) = Gypsy (Roma) hexatonic = 7-21B [up]
(3,1,3,1,1,2,1)
(4,1,3,1,2,1), (4,2,1,1,3,1), (4,1,2,1,1,3), (3,3,1,1,3,1), (3,1,3,1,2,2), (3,1,3,1,3,1), (4,3,1,2,1,1)
m22m2m2, (4,3,1,2,2), (5,3,1,2,1), (4,4,1,2,1), (6,1,1,3,1), (4,4,2,1,1), (4,3,3,1,1), (4,3,1,3,1), (4,1,2,2,3), (5,2,1,1,3), (4,3,1,1,3), (4,2,2,3,1), (3,3,2,3,1), (4,1,3,3,1), (5,1,3,1,2), monk5, (4,1,3,1,3)
7#9no5, madd9, add4, dimadd3, 1b226, m7, 15b67, m22m2, M7#5, 1b224, mM7, 15b6b7, 7add7, 7#5, M7b5, min#4, add#4, mM7b5, 135#9, maj7add11, 2m2m2, 7, M7, add9
(3,2,1,1,1,3,1) = forte class 7-18B = 7-18B [up]
(3,1,3,1,1,1,2)
(4,2,1,1,1,3), (3,2,1,2,3,1), (4,1,3,2,1,1), (3,3,1,1,3,1), (3,2,2,1,3,1), (5,1,1,1,3,1), (4,3,2,1,1,1)
2m2m2m2, (4,3,2,1,2), (5,1,1,1,4), (4,3,2,2,1), (5,3,2,1,1), (4,4,2,1,1), (6,1,1,3,1), (4,3,3,1,1), (6,1,1,1,3), (4,3,1,1,3), (4,1,3,2,2), (5,1,3,2,1), (5,1,2,3,1), (5,2,1,3,1), (3,3,2,3,1), (4,2,1,2,3), (4,2,2,1,3), (4,1,3,3,1), (3,3,1,3,2), (4,1,3,1,3), (5,1,1,4,1)
69, 7#9no5, madd9, 156b7, 1b367, 1b347, 1b226, m7, 15b67, M7#5, 4b24, 44b2, 1b224, dimadd4, mM7, 136b7, 1b36b7, 7add7, 7#5, 1567, min#4, add#4, 134b7, mM7b5, m7b5, maj7add11, 135#9, 2m2m2, m2m2m2, 7, M7
(3,1,1,3,1,1,2) = chromatic phrygian inverse = 7-20A [up]
(3,2,1,1,3,1,1)
(4,1,1,2,3,1), (3,3,1,1,3,1), (4,1,3,1,1,2), (3,2,3,1,1,2), (4,1,2,3,1,1), (3,2,2,3,1,1), (5,1,1,3,1,1)
(4,1,4,1,2), (6,1,1,3,1), (6,1,3,1,1), (4,3,3,1,1), (5,3,1,1,2), (4,4,1,1,2), (4,3,1,1,3), (4,1,3,2,2), (4,1,2,3,2), (5,1,2,3,1), (4,2,2,3,1), (5,2,3,1,1), (3,3,2,3,1), penta, (5,1,1,2,3), (4,1,3,3,1), (5,1,1,3,2), (4,1,3,1,3), (5,1,1,4,1), (5,1,4,1,1)
69, 7#9no5, m2m22, add4, 1b347, 1b226, m7, 134b5, 15b67, M7#5, 4b24, 44b2, 1b224, 7sus4, mM7, 136b7, 1b36b7, 7add7, 7#5, M7b5, min#4, 134b7, mM7b5, maj7add11, 135#9, 7, M7, add9
dim, 1b34, maj, 134, aug, 1b33, 1b37, 44, 13b7, 137, 13b5, tt4, 4tt, 1b3b7, m22, 22, m2m2, min
(3,3,2,1,1,1,1) = forte class 7-10B = 7-10B [up]
(3,3,1,1,1,1,2)
(3,3,2,1,1,2), (5,1,1,1,1,3), (3,3,2,2,1,1), (6,2,1,1,1,1), (3,3,3,1,1,1), (4,3,2,1,1,1), (3,3,2,1,2,1)
2m2m2m2, 22m2m2, (4,3,2,1,2), (5,1,1,1,4), 2m22m2, (4,3,2,2,1), (5,3,2,1,1), m2m2m2m2, 2m2m22, (4,3,3,1,1), penta9, (6,1,1,1,3), (5,2,1,1,3), (3,3,2,3,1), (3,3,3,2,1), (5,1,1,2,3), (6,3,1,1,1), (5,1,2,1,3), (3,3,3,1,2), (4,1,1,3,3)
69, 7#9no5, madd9, m2m22, 156b7, 1b367, dimadd3, 9no5, m7, 1b226, 134b5, 44b2, m22m2, 1b224, dimadd4, dim7, 136b7, 7add7, 1b36b7, 1567, min#4, 135#9, m7b5, mM7b5, 2m2m2, 7, m2m2m2, M7, add9
dim, 1b34, maj, 134, 1b37, 1b33, 13b7, 44, 137, 13b5, 4tt, tt4, 2m2, 1b3b7, m22, 22, m2m2, min
(3,1,3,1,1,1,2) = forte class 7-18A = 7-18A [up]
(3,2,1,1,1,3,1)
(4,1,1,1,2,3), (3,3,1,3,1,1), (3,2,1,2,3,1), (5,1,3,1,1,1), (3,1,3,1,2,2), (4,3,1,1,1,2), (4,1,1,2,3,1)
(4,3,2,1,2), (4,3,1,2,2), (5,4,1,1,1), (6,1,3,1,1), m2m2m22, (4,3,1,3,1), (4,1,2,2,3), (4,3,1,1,3), (4,4,1,1,2), (5,1,3,2,1), (4,2,2,3,1), (5,1,2,3,1), (3,3,2,3,1), (4,2,1,2,3), (5,1,1,2,3), (6,3,1,1,1), (5,1,3,1,2), (4,1,3,3,1), (3,3,1,3,2), (4,1,1,3,3), (5,1,4,1,1)
7#9no5, m2m22, 156b7, add4, dimadd3, 1b347, 1b226, 15b67, m7, 134b5, M7#5, 4b24, 44b2, 1b224, dimadd4, mM7, 136b7, 15b6b7, 1b36b7, 7#5, M7b5, min#4, add#4, 135#9, maj7add11, mM7b5, m7b5, 7, m2m2m2, M7, add9
(3,3,1,2,1,1,1) = forte class 7-16B = 7-16B [up]
(3,3,1,1,1,2,1)
(3,3,1,2,2,1), (3,3,1,2,1,2), (4,2,1,1,1,3), (3,3,3,1,1,1), (3,3,1,3,1,1), (4,3,1,2,1,1), (6,1,2,1,1,1)
m22m22, 2m2m2m2, m22m2m2, (4,3,1,2,2), m222m2, (5,3,1,2,1), (4,4,2,1,1), (6,1,3,1,1), (4,3,3,1,1), (4,3,1,3,1), (6,1,1,1,3), (4,3,1,1,3), (3,3,3,2,1), (4,2,2,1,3), (4,2,1,2,3), (6,3,1,1,1), (4,1,3,3,1), (3,3,3,1,2), (3,3,1,3,2), (4,1,1,3,3)
156b7, 1b367, dimadd3, 1b347, 15b67, 1b226, 134b5, m7, m22m2, M7#5, 1b224, dimadd4, dim7, mM7, 15b6b7, 7add7, 1b36b7, 7#5, 1567, min#4, add#4, maj7add11, m7b5, 135#9, mM7b5, 2m2m2, 7, m2m2m2, M7
dim, 1b34, maj, 134, aug, 1b37, 1b33, 13b7, 137, 13b5, 4tt, tt4, 2m2, 1b3b7, 22, m22, min, m2m2
(3,3,1,1,1,1,2) = forte class 7-10A = 7-10A [up]
(3,3,2,1,1,1,1)
(3,3,2,1,1,2), (3,3,1,1,2,2), (3,3,1,2,1,2), (4,1,1,1,2,3), (3,3,3,1,1,1), (6,1,1,1,1,2), (5,3,1,1,1,1)
m22m22, m2m222, (5,3,2,1,1), (5,3,1,2,1), (5,4,1,1,1), m2m2m22, m2m2m2m2, (4,3,3,1,1), 2m2m22, penta9, (6,1,1,1,3), (5,3,1,1,2), (4,1,2,2,3), (3,3,3,2,1), (4,2,1,2,3), (5,1,1,2,3), (6,3,1,1,1), (3,3,1,3,2), (3,3,3,1,2), (4,1,1,3,3)
69, m2m22, 156b7, 1b367, add4, 1b347, dimadd3, 9no5, 1b226, m7, 134b5, m22m2, 44b2, 1b224, dimadd4, dim7, 15b6b7, 7add7, 1b36b7, min#4, add#4, 135#9, m7b5, mM7b5, 2m2m2, 7, m2m2m2, M7, add9
dim, 1b34, maj, 134, 1b37, 1b33, 13b7, 44, 137, 13b5, 4tt, tt4, 2m2, 1b3b7, m22, 22, m2m2, min
(3,2,1,3,1,1,1) = forte class 7-19B = 7-19B [up]
(3,1,2,3,1,1,1)
MttM, (3,2,1,3,1,2), (5,1,3,1,1,1), (4,1,1,3,2,1), (3,3,3,1,1,1), (4,1,1,1,3,2), (4,2,1,3,1,1)
(5,4,1,1,1), (6,1,3,1,1), (4,3,3,1,1), (6,1,1,1,3), (4,1,2,3,2), (4,2,3,2,1), (5,1,3,2,1), (5,2,1,3,1), (3,3,3,2,1), (6,3,1,1,1), (5,1,3,1,2), (5,1,1,3,2), (4,2,1,3,2), (3,3,3,1,2), (5,1,4,1,1), (4,1,1,3,3), (4,2,4,1,1), monk5
madd9, 1b367, add4, 1b347, dimadd3, 1b226, 15b67, 134b5, 44b2, 4b24, 1b224, 7sus4, dimadd4, dim7, 1b36b7, 7add7, 7b5, M7b5, min#4, add#4, 134b7, m7b5, mM7b5, maj7add11, m2m2m2, 7, M7
dim, 1b34, maj, 134, 1b33, 44, 1b37, 13b7, 137, 13b5, tt4, 4tt, 2m2, 1b3b7, m22, m2m2, min
(3,3,1,1,2,1,1) = forte class 7-17 = 7-17 [up]
(3,3,1,1,2,1,1)
(3,3,1,1,2,2), (3,3,2,2,1,1), (4,1,2,1,1,3), (3,3,1,1,3,1), (4,3,1,1,2,1), (6,1,1,2,1,1), (3,3,1,3,1,1)
m2m222, m2m22m2, m22m2m2, 22m2m2, (4,3,2,2,1), (4,4,1,2,1), (6,1,1,3,1), (6,1,3,1,1), (4,3,3,1,1), (4,3,1,3,1), penta9, (5,3,1,1,2), (4,1,2,2,3), (5,2,1,1,3), (4,3,1,1,3), (3,3,2,3,1), (4,1,3,3,1), (3,3,1,3,2), (4,1,3,1,3), (4,1,1,3,3)
69, 7#9no5, madd9, m2m22, add4, 1b347, 9no5, 1b226, m7, 134b5, 15b67, m22m2, M7#5, 1b224, mM7, 15b6b7, 7add7, 1567, min#4, maj7add11, m7b5, 135#9, mM7b5, 2m2m2, 7, M7, add9
(3,2,1,1,3,1,1) = Greek chromatic = 7-20B [up]
(3,1,1,3,1,1,2)
(3,2,3,2,1,1), (4,2,1,1,3,1), (4,1,3,2,1,1), (4,1,1,3,2,1), (3,2,2,3,1,1), (3,3,1,3,1,1), (5,1,1,3,1,1)
(5,3,2,1,1), (4,4,2,1,1), (6,1,1,3,1), (6,1,3,1,1), (4,3,1,3,1), (5,2,1,1,3), (4,3,1,1,3), (4,2,3,2,1), (4,1,3,2,2), (5,1,3,2,1), (4,2,2,3,1), (5,2,3,1,1), penta, (5,1,1,3,2), (4,1,3,3,1), (3,3,1,3,2), monk5, (4,1,1,3,3), (5,1,1,4,1), (5,1,4,1,1)
69, 7#9no5, madd9, 1b347, 15b67, 1b226, m7, 134b5, M7#5, 4b24, 44b2, 1b224, 7sus4, dimadd4, mM7, 7add7, 7#5, M7b5, min#4, add#4, 134b7, 135#9, m7b5, maj7add11, mM7b5, 2m2m2, M7, add9
dim, 137, maj, 134, aug, 13b7, 1b37, 1b33, 44, 1b34, 13b5, tt4, 4tt, 2m2, 1b3b7, 22, m2m2, min
(3,1,2,3,1,1,1) = forte class 7-19A = 7-19A [up]
(3,2,1,3,1,1,1)
(3,1,2,3,1,2), (4,1,2,3,1,1), (3,2,1,3,1,2), (4,2,3,1,1,1), (3,3,3,1,1,1), (5,1,1,1,3,1), (4,1,1,3,1,2)
(5,1,1,1,4), (4,1,4,1,2), (6,1,1,3,1), (4,3,3,1,1), (6,1,1,1,3), (4,1,2,3,2), (4,2,3,2,1), (5,1,2,3,1), (5,2,3,1,1), (5,2,1,3,1), (3,3,3,2,1), (6,3,1,1,1), (4,2,3,1,2), (5,1,3,1,2), (3,3,3,1,2), (5,1,1,4,1), (4,2,4,1,1), (4,1,1,3,3)
7#9no5, madd9, 1b367, add4, dimadd3, 1b226, 15b67, 134b5, 4b24, 44b2, 1b224, 7sus4, dimadd4, dim7, 136b7, 1b36b7, 7add7, 7b5, M7b5, min#4, 134b7, maj7add11, m7b5, mM7b5, 7, m2m2m2, M7
dim, 1b34, maj, 134, 1b33, 44, 1b37, 13b7, 137, 13b5, tt4, 4tt, 2m2, 1b3b7, m22, min, m2m2
(3,2,3,1,1,1,1) = forte class 7-12 = 7-12 [up]
(3,2,3,1,1,1,1)
(3,2,3,2,1,1), (5,1,1,1,1,3), (4,2,3,1,1,1), (4,1,1,1,3,2), (3,2,3,1,2,1), (3,2,3,1,1,2), (5,3,1,1,1,1)
(5,1,1,1,4), (5,3,2,1,1), (5,3,1,2,1), (5,4,1,1,1), m2m2m2m2, (5,3,1,1,2), (6,1,1,1,3), (5,2,1,1,3), (4,1,2,3,2), (4,2,3,2,1), (5,2,3,1,1), penta, (3,3,2,3,1), (5,1,2,1,3), (6,3,1,1,1), (5,1,1,2,3), (5,1,1,3,2), (4,2,3,1,2), (4,2,1,3,2), (3,3,1,3,2), (4,2,4,1,1)
69, 7#9no5, madd9, m2m22, 1b367, add4, dimadd3, 1b347, 1b226, 134b5, m7, m22m2, 44b2, 1b224, 7sus4, dimadd4, 136b7, 1b36b7, 7add7, M7b5, 7b5, min#4, add#4, 134b7, mM7b5, m7b5, 135#9, 2m2m2, m2m2m2, 7, add9
dim, 1b34, maj, 134, 1b37, 1b33, 13b7, 44, 137, 13b5, tt4, 4tt, 2m2, 1b3b7, m22, 22, min, m2m2
(4,1,1,1,2,2,1) = forte class 7-14A = 7-14A [up]
(4,1,2,2,1,1,1)
(4,1,1,1,2,3), (4,1,2,2,2,1), (4,1,4,1,1,1), (4,1,1,3,2,1), (4,2,1,2,2,1), (5,1,1,1,2,2), (5,1,1,2,2,1)
(5,2,1,2,2), m2m222, m222m2, (5,1,1,1,4), (4,1,4,1,2), (4,3,2,2,1), (5,4,1,1,1), m2m2m22, (5,1,2,2,2), (4,1,2,2,3), (4,2,3,2,1), (5,1,3,2,1), (4,2,1,2,3), (5,1,1,2,3), (5,1,1,3,2), (5,2,2,2,1), (4,1,1,3,3), (5,1,4,1,1), monk5, (5,1,1,4,1)
69, madd9, m2m22, 156b7, add4, 1b347, 9no5, m7, 134b5, 4b24, 44b2, 1b224, 7sus4, dimadd4, 136b7, 15b6b7, 1b36b7, 7add7, 1567, M7b5, 134b7, add#4, m7b5, mM7b5, maj7add11, m2m2m2, M7, add9
dim, 137, maj, 134, 13b7, 1b37, 44, 1b34, 13b5, tt4, 4tt, 2m2, 1b3b7, m22, 22, m2m2, min
(4,1,2,1,2,1,1) = forte class 7-38B = 7-38B [up]
(4,1,1,2,1,2,1)
(4,1,2,3,1,1), (5,2,1,2,1,1), (4,1,2,1,3,1), (4,1,2,1,2,2), (5,1,2,1,2,1), (4,1,3,2,1,1), (4,3,1,2,1,1)
(5,2,1,2,2), m22m22, m22m2m2, (4,3,1,2,2), 2m22m2, (4,1,4,1,2), (5,3,2,1,1), (5,3,1,2,1), (4,4,1,2,1), (4,4,2,1,1), (4,3,3,1,1), (4,3,1,3,1), (4,1,3,2,2), (4,1,2,3,2), (5,1,2,3,1), (5,1,3,2,1), (5,2,3,1,1), (5,2,1,3,1), (5,1,2,1,3), (4,1,3,3,1), (5,1,1,4,1)
69, 7#9no5, madd9, 156b7, 1b367, add4, dimadd3, 1b347, 1b226, 15b67, m22m2, M7#5, 4b24, 44b2, 7sus4, dimadd4, mM7, 136b7, 15b6b7, 1b36b7, 7add7, 7#5, min#4, add#4, 134b7, 135#9, maj7add11, mM7b5, 2m2m2, M7, 7
(4,2,2,1,1,1,1) = forte class 7-9B = 7-9B [up]
(4,1,1,1,1,2,2)
(4,2,2,2,1,1), (4,4,1,1,1,1), (4,2,3,1,1,1), (5,2,2,1,1,1), (4,2,2,1,2,1), (6,2,1,1,1,1), (4,2,2,1,1,2)
(5,2,2,1,2), 2m2m2m2, (5,1,1,1,4), 2m22m2, 22m2m2, (4,4,2,1,1), (5,4,1,1,1), (4,4,1,2,1), m2m2m2m2, augpenta, 2m2m22, (4,4,1,1,2), (4,2,2,3,1), (4,2,3,2,1), (5,2,3,1,1), (4,2,2,1,3), (6,3,1,1,1), (5,2,2,2,1), (4,2,3,1,2), (4,2,4,1,1)
7#9no5, madd9, m2m22, 156b7, 1b367, add4, dimadd3, 9no5, 1b226, 134b5, m22m2, M7#5, 44b2, 7sus4, mM7, dimadd4, 136b7, 7#5, 1567, 7add7, M7b5, 7b5, add#4, 134b7, m7b5, 2m2m2, m2m2m2, add9
(4,1,2,1,1,1,2) = forte class 7-11A = 7-11A [up]
(4,2,1,1,1,2,1)
(5,2,1,1,1,2), (4,1,2,1,2,2), (4,1,2,2,1,2), (4,1,2,1,1,3), (4,1,3,1,1,2), (4,3,1,1,1,2), (6,1,2,1,1,1)
(5,2,2,1,2), (5,2,1,2,2), m22m22, 2m2m2m2, (4,3,2,1,2), m22m2m2, (4,3,1,2,2), m222m2, (4,1,4,1,2), (4,4,1,2,1), m2m2m22, (6,1,3,1,1), (5,3,1,1,2), (5,2,1,1,3), (4,1,2,2,3), (4,3,1,1,3), (4,4,1,1,2), (4,1,2,3,2), (4,1,3,2,2), (6,3,1,1,1), (4,1,3,1,3)
69, madd9, m2m22, 156b7, add4, 1b347, dimadd3, m7, 1b226, 134b5, 15b67, m22m2, M7#5, 1b224, 7sus4, dimadd4, mM7, 136b7, 15b6b7, 1b36b7, 1567, 7#5, 134b7, maj7add11, 135#9, 2m2m2, 7, M7, m2m2m2, add9
(4,2,1,1,2,1,1) = forte class 7-13B = 7-13B [up]
(4,1,1,2,1,1,2)
(4,2,2,2,1,1), (4,2,1,1,3,1), (6,1,1,2,1,1), (4,2,1,1,2,2), (5,2,1,1,2,1), (4,2,1,3,1,1), (4,3,1,2,1,1)
m2m222, m2m22m2, m22m2m2, (4,3,1,2,2), 22m2m2, (5,3,1,2,1), (6,1,1,3,1), (6,1,3,1,1), (4,4,2,1,1), augpenta, 2m2m22, (4,3,3,1,1), (4,3,1,3,1), (5,2,1,1,3), (4,2,2,3,1), (5,2,1,3,1), (5,2,2,2,1), (4,2,1,3,2), (4,2,4,1,1), monk5
7#9no5, madd9, m2m22, 1b367, dimadd3, 1b347, 1b226, 9no5, 15b67, 134b5, m22m2, M7#5, 1b224, 15b6b7, 7#5, 1567, 7add7, 7b5, M7b5, min#4, add#4, 134b7, 135#9, maj7add11, 2m2m2, 7, M7, add9
(4,1,1,2,2,1,1) = forte class 7-15 = 7-15 [up]
(4,1,1,2,2,1,1)
(4,2,2,2,1,1), (4,1,1,2,3,1), (5,1,2,2,1,1), (4,1,3,2,1,1), (4,1,1,4,1,1), (4,1,1,2,2,2), (5,1,1,2,2,1)
m2m222, m222m2, 22m2m2, (5,3,2,1,1), (4,4,2,1,1), augpenta, (5,1,2,2,2), (4,4,1,1,2), (4,2,2,3,1), (4,1,3,2,2), (5,1,2,3,1), (5,1,3,2,1), (5,1,1,2,3), (4,1,3,3,1), (5,2,2,2,1), (5,1,4,1,1), (4,2,4,1,1), (5,1,1,4,1)
69, 7#9no5, m2m22, 1b347, 9no5, 134b5, M7#5, 4b24, 44b2, dimadd4, mM7, 136b7, 15b6b7, 7#5, 1b36b7, 1567, 7add7, 7b5, M7b5, min#4, add#4, 134b7, mM7b5, maj7add11, 2m2m2, add9
(4,1,2,1,1,2,1) = forte class 7-37 = 7-37 [up]
(4,1,2,1,1,2,1)
(4,1,3,1,2,1), (4,1,2,1,3,1), (4,1,2,2,2,1), (4,1,2,1,1,3), (4,3,1,1,2,1), (5,1,2,1,1,2), (5,2,1,1,2,1)
m22m2m2, m2m22m2, (4,1,4,1,2), (4,3,2,2,1), (5,3,1,2,1), (4,4,1,2,1), (5,1,2,2,2), (4,3,1,3,1), 2m2m22, (5,3,1,1,2), (5,2,1,1,3), (4,1,2,2,3), (4,3,1,1,3), (5,2,1,3,1), (5,1,2,1,3), (4,1,3,3,1), (5,1,3,1,2), (5,2,2,2,1), monk5, (4,1,3,1,3)
69, madd9, m2m22, 1b367, add4, dimadd3, m7, 9no5, 1b226, 15b67, m22m2, M7#5, 1b224, mM7, 136b7, 15b6b7, 1567, M7b5, min#4, 134b7, add#4, mM7b5, 135#9, maj7add11, 2m2m2, M7, add9
(4,2,1,2,1,1,1) = forte class 7-36B = 7-36B [up]
(4,1,1,1,2,1,2)
(4,2,1,2,1,2), (4,3,2,1,1,1), (5,2,1,2,1,1), (4,2,3,1,1,1), (4,2,1,2,2,1), (4,2,1,3,1,1), (6,1,2,1,1,1)
(5,2,1,2,2), m22m22, 2m2m2m2, m22m2m2, (4,3,2,1,2), m222m2, 2m22m2, (5,1,1,1,4), (4,3,2,2,1), (5,3,2,1,1), (6,1,3,1,1), (4,3,3,1,1), (4,2,3,2,1), (5,2,3,1,1), (5,2,1,3,1), (4,2,1,2,3), (6,3,1,1,1), (4,2,3,1,2), (4,2,1,3,2), (4,2,4,1,1), monk5
69, 7#9no5, madd9, 156b7, 1b367, dimadd3, 1b347, 15b67, m7, 1b226, 134b5, m22m2, 44b2, 7sus4, dimadd4, 136b7, 15b6b7, 1567, 1b36b7, 7add7, 7b5, M7b5, min#4, add#4, 134b7, m7b5, maj7add11, 2m2m2, m2m2m2, 7, M7
dim, 1b34, maj, 134, 1b37, 44, 1b33, 13b7, 137, 13b5, tt4, 4tt, 2m2, 1b3b7, 22, m22, m2m2, min
(4,1,1,2,1,1,2) = forte class 7-13A = 7-13A [up]
(4,2,1,1,2,1,1)
(4,1,1,2,1,3), (4,1,1,3,1,2), (6,1,1,2,1,1), (4,1,3,1,1,2), (4,2,2,1,1,2), (5,1,2,1,1,2), (4,1,1,2,2,2)
m2m222, m2m22m2, m22m2m2, 22m2m2, (4,1,4,1,2), (6,1,1,3,1), (6,1,3,1,1), augpenta, (5,1,2,2,2), 2m2m22, (5,3,1,1,2), (4,4,1,1,2), (4,1,3,2,2), (4,2,2,1,3), (5,1,2,1,3), (4,2,3,1,2), (5,1,3,1,2), (4,1,1,3,3), (4,1,3,1,3), (4,2,4,1,1)
69, 7#9no5, m2m22, 1b367, add4, 1b347, dimadd3, 9no5, 1b226, 134b5, 15b67, m22m2, 1b224, mM7, 136b7, 15b6b7, 7#5, 1567, 7add7, M7b5, 7b5, 134b7, maj7add11, m7b5, mM7b5, 135#9, 2m2m2, M7
(4,1,1,1,1,2,2) = forte class 7-9A = 7-9A [up]
(4,2,2,1,1,1,1)
(4,4,1,1,1,1), (4,1,2,1,2,2), (4,1,1,1,3,2), (4,2,1,1,2,2), (4,1,1,2,2,2), (5,1,1,1,2,2), (6,1,1,1,1,2)
(5,2,1,2,2), m22m22, m2m222, (4,3,1,2,2), (5,1,1,1,4), (4,4,1,2,1), (5,4,1,1,1), (4,4,2,1,1), m2m2m22, m2m2m2m2, augpenta, (5,1,2,2,2), 2m2m22, (6,1,1,1,3), (4,4,1,1,2), (4,1,2,3,2), (4,1,3,2,2), (4,2,1,3,2), (5,1,1,3,2), (4,2,4,1,1)
69, madd9, m2m22, 156b7, 1b367, add4, dimadd3, 1b347, 9no5, 134b5, M7#5, m22m2, 44b2, 1b224, 7sus4, mM7, 136b7, 15b6b7, 1b36b7, 7#5, 7add7, M7b5, 7b5, add#4, 134b7, 2m2m2, m2m2m2, 7
(4,1,2,2,1,1,1) = forte class 7-14B = 7-14B [up]
(4,1,1,1,2,2,1)
(5,1,2,2,1,1), (4,3,2,1,1,1), (4,1,2,2,1,2), (4,1,4,1,1,1), (5,2,2,1,1,1), (4,1,2,3,1,1), (4,1,2,2,2,1)
(5,2,2,1,2), 2m2m2m2, (4,3,2,1,2), m222m2, (5,1,1,1,4), 22m2m2, (4,1,4,1,2), (4,3,2,2,1), (5,3,2,1,1), (5,4,1,1,1), (5,1,2,2,2), (4,3,3,1,1), (4,1,2,2,3), (4,1,2,3,2), (5,1,2,3,1), (5,2,3,1,1), (5,2,2,2,1), (5,1,4,1,1), (5,1,1,4,1), monk5
69, 7#9no5, madd9, 156b7, add4, m7, 9no5, 1b226, 134b5, 4b24, 44b2, 7sus4, dimadd4, 136b7, 15b6b7, 1b36b7, 7add7, 1567, M7b5, min#4, add#4, 134b7, maj7add11, 2m2m2, m2m2m2, 7, M7, add9
dim, 1b34, maj, 134, 1b33, 44, 13b7, 137, 13b5, 4tt, tt4, 2m2, 1b3b7, m22, 22, m2m2, min
(4,1,1,1,2,1,2) = forte class 7-36A = 7-36A [up]
(4,2,1,2,1,1,1)
(4,2,1,2,1,2), (4,1,1,3,1,2), (4,1,2,2,1,2), (5,1,1,2,1,2), (4,1,1,1,2,3), (6,1,1,1,2,1), (4,1,1,1,3,2)
(5,2,2,1,2), m22m22, m2m22m2, (4,3,2,1,2), m222m2, 2m22m2, (4,1,4,1,2), (5,4,1,1,1), (6,1,1,3,1), m2m2m22, (6,1,1,1,3), (4,1,2,2,3), (4,1,2,3,2), (4,2,1,2,3), (5,1,1,2,3), (4,2,3,1,2), (5,1,3,1,2), (4,2,1,3,2), (5,1,1,3,2), (4,1,1,3,3), (4,2,4,1,1)
7#9no5, m2m22, 156b7, 1b367, add4, dimadd3, 1b347, m7, 15b67, 134b5, m22m2, 44b2, 1b224, 7sus4, dimadd4, 136b7, 1567, 15b6b7, 1b36b7, 7add7, M7b5, 7b5, add#4, 134b7, maj7add11, mM7b5, m7b5, m2m2m2, 7, M7, add9
dim, 1b34, maj, 134, 1b33, 1b37, 44, 13b7, 137, 13b5, 4tt, tt4, 2m2, 1b3b7, m22, 22, m2m2, min
(4,1,1,2,1,2,1) = forte class 7-38A = 7-38A [up]
(4,1,2,1,2,1,1)
(4,1,3,1,2,1), (4,1,1,2,1,3), (4,1,1,2,3,1), (5,1,1,2,1,2), (4,1,1,3,2,1), (4,2,2,1,2,1), (5,1,2,1,2,1)
(5,2,2,1,2), m22m22, m2m22m2, 2m22m2, (5,3,1,2,1), (4,4,1,2,1), (4,4,1,1,2), (4,2,2,3,1), (4,2,3,2,1), (5,1,3,2,1), (5,1,2,3,1), (5,1,1,2,3), (4,2,2,1,3), (5,1,2,1,3), (4,1,3,3,1), (5,1,3,1,2), (5,1,1,3,2), (4,1,3,1,3), monk5, (4,1,1,3,3), (5,1,4,1,1)
7#9no5, madd9, m2m22, 156b7, 1b367, add4, dimadd3, 1b347, 15b67, 134b5, m22m2, M7#5, 4b24, 44b2, 1b224, 7sus4, dimadd4, mM7, 136b7, 1b36b7, 7#5, 1567, M7b5, min#4, add#4, 135#9, maj7add11, mM7b5, m7b5, M7, add9
(4,2,1,1,1,1,2) = forte class 7-8 = 7-8 [up]
(4,2,1,1,1,1,2)
(4,2,1,2,1,2), (4,2,1,1,1,3), (6,2,1,1,1,1), (4,3,1,1,1,2), (4,2,2,1,1,2), (4,2,1,1,2,2), (6,1,1,1,1,2)
2m2m2m2, m22m22, m2m222, (4,3,2,1,2), (4,3,1,2,2), 2m22m2, 22m2m2, (4,4,2,1,1), m2m2m22, m2m2m2m2, augpenta, 2m2m22, (6,1,1,1,3), (4,4,1,1,2), (4,3,1,1,3), (4,2,1,2,3), (6,3,1,1,1), (4,2,2,1,3), (4,2,3,1,2), (4,2,1,3,2)
7#9no5, m2m22, 156b7, 1b367, dimadd3, 1b347, 9no5, m7, 1b226, 134b5, m22m2, M7#5, 1b224, dimadd4, mM7, 136b7, 15b6b7, 7add7, 1b36b7, 7#5, 1567, 7b5, add#4, m7b5, 2m2m2, m2m2m2, 7
dim, 137, maj, 134, aug, 1b37, 1b33, 13b7, tt4, 13b5, 1b34, 4tt, 2m2, 1b3b7, m22, 22, min, m2m2
(4,2,1,1,1,2,1) = forte class 7-11B = 7-11B [up]
(4,1,2,1,1,1,2)
(5,2,1,1,1,2), (4,2,1,1,3,1), (6,1,1,1,2,1), (4,2,1,1,1,3), (4,3,1,1,2,1), (4,2,2,1,2,1), (4,2,1,2,2,1)
(5,2,1,2,2), 2m2m2m2, m2m22m2, m222m2, 2m22m2, (4,3,2,2,1), (6,1,1,3,1), m2m2m22, (4,4,2,1,1), (4,4,1,2,1), (4,3,1,3,1), (6,1,1,1,3), (5,3,1,1,2), (5,2,1,1,3), (4,3,1,1,3), (4,2,2,3,1), (4,2,3,2,1), (4,2,2,1,3), (4,2,1,2,3), (5,2,2,1,2), monk5
69, 7#9no5, madd9, m2m22, 156b7, 1b367, add4, 15b67, 1b226, m7, m22m2, M7#5, 1b224, 7sus4, dimadd4, mM7, 15b6b7, 7add7, 7#5, 1b36b7, 1567, M7b5, add#4, 135#9, m7b5, maj7add11, m2m2m2, 2m2m2, M7, add9
(4,3,1,1,1,1,1) = forte class 7-3B = 7-3B [up]
(4,1,1,1,1,1,3)
(4,4,1,1,1,1), (7,1,1,1,1,1), (4,3,1,1,2,1), (4,3,1,1,1,2), (4,3,2,1,1,1), (4,3,1,2,1,1), (5,3,1,1,1,1)
2m2m2m2, m2m22m2, m22m2m2, (4,3,2,1,2), (4,3,1,2,2), (5,1,1,1,4), (4,4,1,2,1), (4,3,2,2,1), (5,3,2,1,1), (5,3,1,2,1), m2m2m22, (5,4,1,1,1), (4,4,2,1,1), m2m2m2m2, (4,3,3,1,1), (4,3,1,3,1), (5,3,1,1,2), (4,4,1,1,2), (4,3,1,1,3), (6,3,1,1,1)
69, madd9, m2m22, 156b7, add4, dimadd3, 15b67, 134b5, m7, 1b226, 44b2, m22m2, M7#5, 1b224, dimadd4, mM7, 136b7, 15b6b7, 7add7, 1567, 7#5, min#4, add#4, 135#9, 2m2m2, 7, M7, m2m2m2
(4,1,1,3,1,1,1) = forte class 7-7B = 7-7B [up]
(4,1,1,1,3,1,1)
(4,1,1,3,1,2), (5,1,3,1,1,1), (4,1,4,1,1,1), (4,1,1,4,1,1), (4,2,3,1,1,1), (5,1,1,3,1,1), (4,1,1,3,2,1)
(5,1,1,1,4), (4,1,4,1,2), (5,4,1,1,1), (6,1,1,3,1), (6,1,3,1,1), (4,2,3,2,1), (5,1,3,2,1), (5,2,3,1,1), (6,3,1,1,1), (5,1,3,1,2), (4,2,3,1,2), (5,1,1,3,2), (4,2,4,1,1), (5,1,1,4,1), (4,1,1,3,3), (5,1,4,1,1), monk5
7#9no5, madd9, add4, dimadd3, 1b347, 1b226, 15b67, 134b5, 44b2, 4b24, 1b224, 7sus4, dimadd4, 136b7, 7add7, 7b5, M7b5, 134b7, add#4, m7b5, mM7b5, maj7add11, m2m2m2, M7
dim, 137, maj, 134, 1b33, 13b7, 44, 1b37, 13b5, tt4, 1b34, 4tt, 2m2, 1b3b7, m22, min, m2m2
(4,1,3,1,1,1,1) = forte class 7-6B = 7-6B [up]
(4,1,1,1,1,3,1)
(4,1,3,1,2,1), (4,4,1,1,1,1), (5,1,3,1,1,1), (4,1,4,1,1,1), (4,1,3,1,1,2), (4,1,3,2,1,1), (5,3,1,1,1,1)
(5,1,1,1,4), (4,4,1,2,1), (4,1,4,1,2), (5,3,2,1,1), (5,3,1,2,1), (6,1,3,1,1), (5,4,1,1,1), (4,4,2,1,1), m2m2m2m2, (5,3,1,1,2), (4,4,1,1,2), (4,1,3,2,2), (5,1,3,2,1), (6,3,1,1,1), (5,1,3,1,2), (4,1,3,3,1), monk5, (5,1,4,1,1), (4,1,3,1,3), (5,1,1,4,1)
69, madd9, m2m22, add4, 1b347, dimadd3, 1b226, 134b5, 15b67, m22m2, M7#5, 4b24, 44b2, dimadd4, mM7, 136b7, 7add7, 7#5, M7b5, min#4, add#4, 134b7, mM7b5, maj7add11, 135#9, 2m2m2, m2m2m2, M7
dim, 137, maj, 134, aug, 13b7, 44, 1b37, 1b33, 1b34, 13b5, tt4, 4tt, 2m2, m22, 22, min, m2m2
(4,1,1,1,1,1,3) = forte class 7-3A = 7-3A [up]
(4,3,1,1,1,1,1)
(4,1,1,1,2,3), (4,4,1,1,1,1), (4,1,1,2,1,3), (4,1,2,1,1,3), (7,1,1,1,1,1), (4,2,1,1,1,3), (5,1,1,1,1,3)
2m2m2m2, m22m2m2, m2m22m2, (5,1,1,1,4), (5,4,1,1,1), (4,4,1,2,1), m2m2m22, (4,4,2,1,1), m2m2m2m2, (6,1,1,1,3), (5,2,1,1,3), (4,1,2,2,3), (4,4,1,1,2), (4,3,1,1,3), (4,2,2,1,3), (4,2,1,2,3), (5,1,1,2,3), (5,1,2,1,3), (4,1,1,3,3), (4,1,3,1,3)
madd9, m2m22, 156b7, 1b367, add4, 1b226, m7, 134b5, 15b67, M7#5, 44b2, m22m2, 1b224, mM7, 136b7, 15b6b7, 7add7, 1b36b7, 7#5, 1567, add#4, m7b5, mM7b5, 135#9, m2m2m2, 2m2m2, M7, add9
(4,1,1,1,1,3,1) = forte class 7-6A = 7-6A [up]
(4,1,3,1,1,1,1)
(4,4,1,1,1,1), (4,1,2,1,3,1), (5,1,1,1,1,3), (4,2,1,1,3,1), (4,1,4,1,1,1), (5,1,1,1,3,1), (4,1,1,2,3,1)
(5,1,1,1,4), (4,1,4,1,2), (4,4,1,2,1), m2m2m2m2, (5,4,1,1,1), (4,4,2,1,1), (6,1,1,3,1), (4,3,1,3,1), (6,1,1,1,3), (5,2,1,1,3), (4,4,1,1,2), (4,2,2,3,1), (5,1,2,3,1), (5,2,1,3,1), (5,1,2,1,3), (5,1,1,2,3), (4,1,3,3,1), monk5, (5,1,1,4,1), (5,1,4,1,1)
7#9no5, madd9, m2m22, 1b367, add4, 15b67, 134b5, m22m2, M7#5, 4b24, 44b2, 1b224, mM7, 136b7, 1b36b7, 7add7, 7#5, M7b5, min#4, 134b7, add#4, 135#9, mM7b5, maj7add11, m2m2m2, 2m2m2, M7, add9
dim, 137, maj, 134, aug, 13b7, 1b37, 1b33, 44, 13b5, tt4, 4tt, 2m2, 1b3b7, m22, 22, m2m2, min
(4,1,1,1,3,1,1) = forte class 7-7A = 7-7A [up]
(4,1,1,3,1,1,1)
(5,1,1,1,3,1), (4,1,4,1,1,1), (4,1,1,1,3,2), (4,1,1,4,1,1), (4,1,2,3,1,1), (4,2,1,3,1,1), (5,1,1,3,1,1)
(5,1,1,1,4), (4,1,4,1,2), (5,4,1,1,1), (6,1,1,3,1), (6,1,3,1,1), (4,3,3,1,1), (6,1,1,1,3), (4,1,2,3,2), (5,1,2,3,1), (5,2,1,3,1), (5,2,3,1,1), (4,2,1,3,2), (5,1,1,3,2), (4,2,4,1,1), monk5, (5,1,1,4,1), (5,1,4,1,1)
7#9no5, madd9, 1b367, add4, 1b347, 15b67, 1b226, 134b5, 4b24, 44b2, 1b224, 7sus4, 136b7, 1b36b7, 7add7, 7b5, M7b5, min#4, 134b7, add#4, maj7add11, m2m2m2, 7, M7
dim, 1b34, maj, 134, 1b37, 1b33, 44, 13b7, 137, 13b5, tt4, 4tt, 2m2, 1b3b7, m22, m2m2, min
(5,1,1,1,1,2,1) = forte class 7-4A = 7-4A [up]
(5,1,2,1,1,1,1)
(5,1,1,1,1,3), (6,1,1,1,2,1), (5,1,1,1,3,1), (5,1,2,1,2,1), (5,2,1,1,2,1), (6,1,1,1,1,2), (5,1,1,2,2,1)
m22m22, m2m222, m2m22m2, m222m2, (5,1,1,1,4), 2m22m2, (5,3,1,2,1), (6,1,1,3,1), m2m2m2m2, m2m2m22, 2m2m22, (6,1,1,1,3), (5,2,1,1,3), (5,1,2,3,1), (5,1,3,2,1), (5,2,1,3,1), (5,1,2,1,3), (5,1,1,2,3), (5,2,2,2,1), (5,1,1,4,1)
7#9no5, madd9, m2m22, 156b7, 1b367, dimadd3, 1b347, 9no5, 15b67, m22m2, 4b24, 44b2, 1b224, dimadd4, 136b7, 15b6b7, 1b36b7, 7add7, 1567, min#4, 134b7, add#4, 135#9, mM7b5, maj7add11, m2m2m2, 2m2m2, add9
dim, 137, maj, 134, 13b7, 1b37, 1b33, 44, 1b34, 13b5, 4tt, tt4, 2m2, 1b3b7, m22, 22, min, m2m2
(5,2,1,1,1,1,1) = forte class 7-2B = 7-2B [up]
(5,1,1,1,1,1,2)
(5,2,1,1,1,2), (5,2,1,2,1,1), (7,1,1,1,1,1), (5,2,2,1,1,1), (6,2,1,1,1,1), (5,2,1,1,2,1), (5,3,1,1,1,1)
(5,2,2,1,2), (5,2,1,2,2), 2m2m2m2, m22m2m2, m2m22m2, 22m2m2, 2m22m2, (5,3,2,1,1), (5,3,1,2,1), (5,4,1,1,1), m2m2m22, m2m2m2m2, 2m2m22, (5,3,1,1,2), (5,2,1,1,3), (5,2,3,1,1), (5,2,1,3,1), (6,3,1,1,1), (5,2,2,2,1)
69, 7#9no5, madd9, m2m22, 156b7, 1b367, add4, dimadd3, 15b67, 9no5, 134b5, 1b226, m22m2, 44b2, 1b224, 7sus4, dimadd4, 15b6b7, 1567, min#4, 134b7, add#4, 135#9, 2m2m2, m2m2m2, add9
dim, 137, maj, 134, 13b7, 1b37, 44, 1b33, tt4, 13b5, 4tt, 1b34, 2m2, 1b3b7, m22, 22, min, m2m2
(5,1,1,2,1,1,1) = forte class 7-5B = 7-5B [up]
(5,1,1,1,2,1,1)
(5,1,1,2,1,2), (5,1,3,1,1,1), (5,2,2,1,1,1), (6,1,1,2,1,1), (5,1,1,2,2,1), (5,1,1,3,1,1), (6,1,2,1,1,1)
(5,2,2,1,2), m2m222, m22m22, 2m2m2m2, m2m22m2, m22m2m2, m222m2, 22m2m2, (5,4,1,1,1), (6,1,1,3,1), (6,1,3,1,1), (5,1,3,2,1), (5,2,3,1,1), (5,1,1,2,3), (6,3,1,1,1), (5,1,3,1,2), (5,2,2,2,1), (5,1,1,3,2), (5,1,4,1,1), (5,1,1,4,1)
7#9no5, m2m22, 156b7, add4, dimadd3, 1b347, 1b226, 9no5, 15b67, 134b5, m22m2, 4b24, 44b2, 1b224, 7sus4, dimadd4, 15b6b7, 1b36b7, 7add7, 1567, M7b5, add#4, 134b7, mM7b5, maj7add11, 2m2m2, m2m2m2, add9
dim, 137, maj, 134, 13b7, 1b37, 44, 1b33, 1b34, 13b5, 4tt, tt4, 2m2, 1b3b7, m22, 22, m2m2
(5,1,1,1,2,1,1) = forte class 7-5A = 7-5A [up]
(5,1,1,2,1,1,1)
(5,1,2,2,1,1), (5,1,1,1,3,1), (5,2,1,2,1,1), (6,1,1,1,2,1), (6,1,1,2,1,1), (5,1,1,1,2,2), (5,1,1,3,1,1)
(5,2,1,2,2), m2m222, m2m22m2, m22m2m2, 2m22m2, m222m2, 22m2m2, (5,1,1,1,4), (5,3,2,1,1), m2m2m22, (6,1,1,3,1), (6,1,3,1,1), (5,1,2,2,2), (6,1,1,1,3), (5,1,2,3,1), (5,2,1,3,1), (5,2,3,1,1), (5,1,1,3,2), (5,1,1,4,1), (5,1,4,1,1)
69, 7#9no5, madd9, m2m22, 156b7, 1b367, 1b347, 9no5, 15b67, 1b226, 134b5, m22m2, 4b24, 44b2, 1b224, 7sus4, dimadd4, 136b7, 15b6b7, 1b36b7, 7add7, 1567, M7b5, min#4, 134b7, maj7add11, 2m2m2, m2m2m2
dim, 137, 134, 1b37, 13b7, 44, 1b33, 13b5, tt4, 4tt, 1b34, 2m2, 1b3b7, m22, 22, min, m2m2
(5,1,2,1,1,1,1) = forte class 7-4B = 7-4B [up]
(5,1,1,1,1,2,1)
(5,1,2,2,1,1), (5,1,3,1,1,1), (5,1,2,1,2,1), (6,2,1,1,1,1), (5,1,2,1,1,2), (5,3,1,1,1,1), (6,1,2,1,1,1)
m22m22, 2m2m2m2, m22m2m2, m222m2, 22m2m2, 2m22m2, (5,3,2,1,1), (5,3,1,2,1), (5,4,1,1,1), m2m2m2m2, (6,1,3,1,1), (5,1,2,2,2), 2m2m22, (5,3,1,1,2), (5,1,2,3,1), (5,1,3,2,1), (5,1,2,1,3), (6,3,1,1,1), (5,1,3,1,2), (5,1,4,1,1)
69, 7#9no5, m2m22, 156b7, 1b367, add4, 1b347, dimadd3, 9no5, 1b226, 134b5, 15b67, m22m2, 4b24, 44b2, dimadd4, 136b7, 15b6b7, 1b36b7, 1567, M7b5, min#4, add#4, 135#9, maj7add11, mM7b5, 2m2m2, m2m2m2
dim, 137, maj, 134, 13b7, 44, 1b33, 1b37, 1b34, 13b5, tt4, 4tt, 2m2, 1b3b7, m22, 22, min, m2m2
(5,1,1,1,1,1,2) = forte class 7-2A = 7-2A [up]
(5,2,1,1,1,1,1)
(5,2,1,1,1,2), (5,1,1,1,1,3), (5,1,1,2,1,2), (7,1,1,1,1,1), (5,1,2,1,1,2), (5,1,1,1,2,2), (6,1,1,1,1,2)
(5,2,1,2,2), 2m2m2m2, m22m22, m2m222, m2m22m2, m22m2m2, (5,1,1,1,4), m2m2m22, m2m2m2m2, (5,1,2,2,2), 2m2m22, (6,1,1,1,3), (5,3,1,1,2), (5,2,1,1,3), (5,1,1,2,3), (5,1,2,1,3), (5,2,2,1,2), (5,1,3,1,2), (5,1,1,3,2)
69, madd9, m2m22, 156b7, 1b367, add4, dimadd3, 1b347, 9no5, 1b226, 15b67, m22m2, 44b2, 1b224, 7sus4, 136b7, 15b6b7, 7add7, 1b36b7, 1567, M7b5, 135#9, mM7b5, m2m2m2, 2m2m2, add9
dim, 137, maj, 134, 13b7, 1b37, 1b33, 44, 1b34, 13b5, tt4, 4tt, 2m2, 1b3b7, m22, 22, min, m2m2
(6,1,1,1,1,1,1) = chromatic heptamirror = 7-1 [up]
(6,1,1,1,1,1,1)
(6,1,1,1,2,1), (7,1,1,1,1,1), (6,2,1,1,1,1), (6,1,1,2,1,1), (6,1,1,1,1,2), (6,1,2,1,1,1)
(6,1,1,1,3), m2m222, m22m22, 2m2m2m2, m2m22m2, m22m2m2, 2m22m2, m222m2, 22m2m2, (6,3,1,1,1), (6,1,1,3,1), m2m2m2m2, m2m2m22, (6,1,3,1,1), 2m2m22
7#9no5, m2m22, 156b7, 1b367, 1b347, dimadd3, 134b5, 9no5, 15b67, 1b226, m22m2, 1b224, dimadd4, 15b6b7, 1b36b7, 7add7, 1567, maj7add11, m2m2m2, 2m2m2
dim, 13b5, tt4, 2m2, 134, 1b3b7, 1b37, 13b7, 1b33, m22, 22, 4tt, 1b34, m2m2, 137
Go to n-chords, for n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
(2,2,2,1,1,1,2,1) = forte class 8-22A = 8-22A [up]
(2,2,2,1,2,1,1,1)
(3,1,1,2,1,2,2), (3,2,2,2,1,1,1), (3,1,2,2,2,1,1), melminor, (4,2,1,1,1,2,1), diatonic, (3,2,2,1,1,1,2), (4,1,1,1,2,1,2)
(2,1,2,1,2,1,2,1) = octatonic scale = 8-28 [up]
(2,1,2,1,2,1,2,1)
(3,1,2,1,2,1,2), (3,2,1,2,1,2,1)
(4,2,1,2,1,2), (3,2,1,2,3,1), (5,1,2,1,2,1), (3,1,2,3,1,2), MttM, (3,3,1,2,1,2), (3,2,3,1,2,1), (3,3,2,1,2,1)
(5,1,2,3,1), (5,1,3,2,1), m22m22, (3,3,2,3,1), (3,3,3,2,1), (4,2,1,2,3), (4,3,2,1,2), 2m22m2, (5,1,2,1,3), (5,3,1,2,1), (4,2,1,3,2), (4,2,3,1,2), (3,3,3,1,2), (3,3,1,3,2)
7#9no5, 156b7, 1b367, dimadd3, 1b347, m7, 4b24, m22m2, dimadd4, dim7, 136b7, 1b36b7, 7b5, min#4, add#4, mM7b5, 135#9, m7b5, 7
dim, 13b5, tt4, maj, 2m2, 1b3b7, m22, 1b33, 13b7, 1b37, 4tt, 1b34, min
bebopdominant = (2,2,1,2,2,1,1,1) = Greek = 8-23 [up]
bebopdominant
(3,2,2,1,1,1,2), (3,2,1,1,1,2,2), (3,2,1,2,2,1,1), (4,1,1,1,2,2,1), (4,1,2,2,1,1,1), (3,1,1,2,2,1,2), diatonic
(3,2,1,2,2,2), (3,3,1,1,2,2), (3,2,1,2,3,1), (3,2,3,1,1,2), (5,1,1,1,2,2), (3,2,3,2,1,1), (4,1,2,3,1,1), (3,3,2,2,1,1), (4,1,4,1,1,1), (3,2,2,1,2,2), (5,2,1,1,1,2), (4,1,1,1,2,3), (5,1,2,2,1,1), (4,1,2,2,1,2), (5,2,2,1,1,1), (4,1,1,3,2,1), (3,2,2,2,1,2), (5,1,1,2,2,1), (4,2,1,2,2,1), (4,3,2,1,1,1), (4,1,2,2,2,1)
dim, 1b34, maj, 134, 1b33, 44, 1b37, 13b7, 137, 13b5, tt4, 4tt, 2m2, 1b3b7, 22, m22, m2m2, min
(2,2,2,1,1,2,1,1) = forte class 8-24 = 8-24 [up]
(2,2,2,1,1,2,1,1)
(4,1,1,2,1,1,2), (2,2,2,2,2,1,1), (3,2,2,1,1,2,1), (3,1,2,2,2,1,1), (4,2,1,1,2,1,1), (3,1,1,2,2,2,1), (3,1,2,1,1,2,2)
(3,2,2,2,2,1), (3,3,1,1,2,2), augscale, (3,1,3,1,2,2), (4,1,1,2,2,2), (4,2,1,3,1,1), (4,2,1,1,2,2), (3,1,2,2,2,2), (4,1,1,3,1,2), (3,3,2,2,1,1), (3,2,2,1,3,1), (3,2,3,1,2,1), (4,2,2,1,1,2), (5,1,2,1,1,2), (4,3,1,2,1,1), (4,2,2,2,1,1), (6,1,1,2,1,1), (4,1,3,1,1,2), (5,2,1,1,2,1), (4,1,1,2,1,3), (4,2,1,1,3,1), (4,1,2,2,2,1)
bebopmajor = (2,2,1,2,1,1,2,1) = blues = 8-26 [up]
bebopmajor
(3,1,1,2,1,2,2), (3,2,1,2,1,1,2), harmmajor, diatonic, (3,2,1,1,2,1,2), (4,1,2,1,1,2,1), harmminor, (3,2,2,1,2,1,1)
(2,2,1,2,1,2,1,1) = forte class 8-27B = 8-27B [up]
(2,2,1,1,2,1,2,1)
(3,2,1,1,2,2,1), melminor, (3,2,1,2,1,1,2), harmmajor, (4,1,2,1,2,1,1), (3,1,1,2,2,1,2), (3,2,1,2,1,2,1), (3,1,2,1,1,2,2)
(2,2,2,1,2,1,1,1) = Spanish octatonic scale = 8-22B [up]
(2,2,2,1,1,1,2,1)
(3,2,1,1,1,2,2), melminor, diatonic, (4,2,1,2,1,1,1), (3,1,1,1,2,2,2), (4,1,2,1,1,1,2), (3,2,2,1,2,1,1), (3,1,1,2,2,2,1)
(2,2,2,2,1,1,1,1) = forte class 8-21 = 8-21 [up]
(2,2,2,2,1,1,1,1)
(2,2,2,2,2,1,1), (3,2,2,2,1,1,1), melminor, (4,2,2,1,1,1,1), (3,1,1,1,2,2,2), (4,1,1,1,1,2,2), (4,2,1,1,1,1,2)
(3,2,2,2,2,1), (3,2,1,2,2,2), (4,1,1,1,3,2), (6,2,1,1,1,1), augscale, (4,1,1,2,2,2), (5,1,1,1,2,2), (4,2,1,1,2,2), (3,1,2,2,2,2), (4,1,2,1,2,2), (4,2,2,1,1,2), (4,2,2,2,1,1), (4,2,1,2,1,2), (4,3,1,1,1,2), (5,2,2,1,1,1), (3,2,2,2,1,2), (4,2,2,1,2,1), (6,1,1,1,1,2), (4,4,1,1,1,1), (4,2,1,1,1,3), (4,2,3,1,1,1), (3,2,2,3,1,1)
(2,2,1,1,2,1,2,1) = forte class 8-27A = 8-27A [up]
(2,2,1,2,1,2,1,1)
(3,2,2,1,1,2,1), melminor, (4,1,1,2,1,2,1), (3,2,1,1,2,1,2), (3,1,2,2,1,1,2), harmminor, (3,2,1,2,2,1,1), (3,1,2,1,2,1,2)
(2,2,1,1,2,2,1,1) = Messiaen's mode 6 = 8-25 [up]
(2,2,1,1,2,2,1,1)
(4,1,1,2,2,1,1), (3,1,2,2,1,1,2), (3,2,1,1,2,2,1), (2,2,2,2,2,1,1)
(3,2,2,2,2,1), augscale, (4,2,1,1,2,2), (4,1,1,2,2,2), (3,3,2,1,1,2), (3,1,2,2,2,2), (4,2,2,1,1,2), (4,2,2,2,1,1), (5,1,2,2,1,1), (3,3,1,2,2,1), (4,1,3,2,1,1), (5,1,1,2,2,1), (3,1,2,3,1,2), (4,1,1,2,3,1), MttM, (4,1,1,4,1,1)
(3,1,1,1,1,2,2,1) = forte class 8-15A = 8-15A [up]
(3,1,2,2,1,1,1,1)
(3,2,1,1,2,2,1), (3,2,1,3,1,1,1), (4,1,3,1,1,1,1), harmminor, (4,1,1,1,2,2,1), (3,3,1,1,1,1,2), (3,1,1,2,2,2,1), (4,1,1,1,1,2,2)
(3,2,1,2,1,1,1,1) = forte class 8-13B = 8-13B [up]
(3,1,1,1,1,2,1,2)
(3,3,2,1,1,1,1), (3,2,1,2,1,1,2), (5,1,2,1,1,1,1), (3,2,1,3,1,1,1), (4,2,1,2,1,1,1), (3,2,1,2,2,1,1), (3,2,1,2,1,2,1), (3,2,3,1,1,1,1)
dim, 1b34, maj, 134, 1b33, 44, 1b37, 13b7, 137, 13b5, tt4, 4tt, 2m2, 1b3b7, 22, m22, min, m2m2
(3,1,1,1,2,1,2,1) = forte class 8-18A = 8-18A [up]
(3,1,2,1,2,1,1,1)
(3,1,3,1,1,1,2), (3,3,1,1,1,2,1), (3,2,1,3,1,1,1), harmmajor, (4,1,1,2,1,2,1), (3,1,2,1,3,1,1), (3,2,1,2,1,2,1), (4,1,1,1,2,1,2)
(3,1,1,2,1,1,1,2) = forte class 8-14A = 8-14A [up]
(3,2,1,1,1,2,1,1)
(3,1,1,2,2,1,2), (3,3,1,1,2,1,1), (3,1,1,2,1,2,2), (3,2,2,1,1,1,2), (5,1,1,2,1,1,1), (3,1,1,3,1,1,2), (3,1,3,1,1,1,2), (4,1,2,1,1,1,2)
(3,1,1,2,1,1,2,1) = forte class 8-19A = 8-19A [up]
(3,1,2,1,1,2,1,1)
(3,1,2,1,3,1,1), (4,1,1,2,1,1,2), (4,1,2,1,1,2,1), (3,1,3,1,1,2,1), (3,2,2,1,1,2,1), (3,3,1,1,2,1,1), (3,1,1,2,2,2,1)
(3,2,2,2,2,1), (3,3,1,1,2,2), (4,2,1,3,1,1), (4,1,1,2,2,2), (4,1,1,3,1,2), (4,1,3,1,2,1), (3,3,2,2,1,1), (3,2,2,1,3,1), (3,2,3,1,2,1), (5,1,2,1,1,2), (4,2,2,1,1,2), (3,3,1,3,1,1), (3,3,1,1,3,1), (6,1,1,2,1,1), (4,1,3,1,1,2), (3,1,3,1,3,1), (5,2,1,1,2,1), (4,1,1,2,1,3), (4,1,2,2,2,1), (4,1,2,1,3,1), (4,1,2,1,1,3), (4,3,1,1,2,1)
(3,2,1,1,1,2,1,1) = forte class 8-14B = 8-14B [up]
(3,1,1,2,1,1,1,2)
(3,2,1,1,1,2,2), (3,3,1,1,2,1,1), (5,1,1,1,2,1,1), (3,2,1,1,1,3,1), (4,2,1,1,1,2,1), (3,2,1,2,2,1,1), (3,2,1,1,3,1,1), (3,2,2,1,2,1,1)
(3,2,2,1,1,1,1,1) = blues octatonic = 8-11B [up]
(3,1,1,1,1,1,2,2)
(3,2,2,1,1,2,1), (3,2,2,2,1,1,1), (4,2,2,1,1,1,1), (5,2,1,1,1,1,1), (3,2,2,1,1,1,2), (4,1,1,1,1,1,3), (3,2,3,1,1,1,1), (3,2,2,1,2,1,1)
(3,1,1,2,2,1,1,1) = enigmatic octachord = 8-16B [up]
(3,1,1,1,2,2,1,1)
(3,1,1,2,2,1,2), (3,2,2,2,1,1,1), (4,1,1,2,2,1,1), (3,2,1,1,1,3,1), (4,1,1,1,3,1,1), (3,1,1,3,1,1,2), (4,1,2,2,1,1,1), (3,1,1,2,2,2,1)
(3,1,2,1,2,1,1,1) = forte class 8-18B = 8-18B [up]
(3,1,1,1,2,1,2,1)
(3,1,2,3,1,1,1), (3,3,1,2,1,1,1), (3,2,1,1,1,3,1), (4,1,2,1,2,1,1), (4,2,1,2,1,1,1), (3,1,2,1,3,1,1), harmminor, (3,1,2,1,2,1,2)
(3,2,1,1,1,1,1,2) = forte class 8-10 = 8-10 [up]
(3,2,1,1,1,1,1,2)
(3,2,1,1,1,2,2), (3,3,2,1,1,1,1), (3,2,1,2,1,1,2), (5,2,1,1,1,1,1), (3,2,2,1,1,1,2), (3,2,1,1,2,1,2), (3,3,1,1,1,1,2), (5,1,1,1,1,1,2)
dim, 137, maj, 134, 1b33, 44, 1b37, 13b7, 13b5, 1b34, tt4, 4tt, 2m2, 1b3b7, 22, m22, min, m2m2
(3,2,1,1,2,1,1,1) = forte class 8-29B = 8-29B [up]
(3,1,1,1,2,1,1,2)
(3,2,1,1,2,2,1), (3,2,2,2,1,1,1), (4,2,1,1,2,1,1), (3,2,1,3,1,1,1), (3,3,1,2,1,1,1), (3,2,1,1,2,1,2), (5,1,1,2,1,1,1), (3,2,1,1,3,1,1)
(3,1,1,1,2,2,1,1) = forte class 8-16A = 8-16A [up]
(3,1,1,2,2,1,1,1)
(4,1,1,3,1,1,1), (3,1,3,1,1,1,2), (4,1,1,2,2,1,1), (3,2,1,2,2,1,1), (4,1,1,1,2,2,1), (3,1,2,2,2,1,1), (3,2,1,1,3,1,1), (3,1,1,1,2,2,2)
(3,1,1,1,1,1,2,2) = forte class 8-11A = 8-11A [up]
(3,2,2,1,1,1,1,1)
(4,3,1,1,1,1,1), (3,2,1,1,1,2,2), (3,1,1,2,1,2,2), (3,1,2,1,1,2,2), (5,1,1,1,1,1,2), (3,2,3,1,1,1,1), (3,1,1,1,2,2,2), (4,1,1,1,1,2,2)
(3,1,2,1,1,1,1,2) = forte class 8-12A = 8-12A [up]
(3,2,1,1,1,1,2,1)
(3,1,3,1,1,1,2), (5,1,2,1,1,1,1), (3,3,1,2,1,1,1), (3,1,2,2,1,1,2), (3,3,1,1,1,1,2), (3,1,2,1,2,1,2), (3,1,2,1,1,2,2), (4,2,1,1,1,1,2)
(3,1,2,1,1,1,2,1) = forte class 8-17 = 8-17 [up]
(3,1,2,1,1,1,2,1)
(3,3,1,1,1,2,1), harmmajor, (3,3,1,2,1,1,1), (4,2,1,1,1,2,1), (3,1,3,1,2,1,1), harmminor, (3,1,3,1,1,2,1), (4,1,2,1,1,1,2)
(3,1,1,1,2,1,1,2) = forte class 8-29A = 8-29A [up]
(3,2,1,1,2,1,1,1)
(3,1,2,3,1,1,1), (3,2,1,2,1,1,2), (5,1,1,1,2,1,1), (3,3,1,1,1,2,1), (3,1,2,2,1,1,2), (4,1,1,2,1,1,2), (3,1,1,3,1,1,2), (3,1,1,1,2,2,2)
(3,1,2,2,1,1,1,1) = forte class 8-15B = 8-15B [up]
(3,1,1,1,1,2,2,1)
(3,1,2,3,1,1,1), (3,3,2,1,1,1,1), (3,1,2,2,2,1,1), (4,2,2,1,1,1,1), harmmajor, (3,1,2,2,1,1,2), (4,1,2,2,1,1,1), (4,1,1,1,1,3,1)
(3,1,1,2,1,2,1,1) = forte class 8-20 = 8-20 [up]
(3,1,1,2,1,2,1,1)
(3,1,1,2,1,2,2), (4,1,1,2,1,2,1), (4,1,2,1,2,1,1), (3,1,3,1,2,1,1), (3,1,1,3,1,1,2), (3,1,3,1,1,2,1), (3,2,1,1,3,1,1), (3,2,2,1,2,1,1)
(3,2,1,1,1,1,2,1) = forte class 8-12B = 8-12B [up]
(3,1,2,1,1,1,1,2)
(3,2,1,1,2,2,1), (3,3,2,1,1,1,1), (3,3,1,1,1,2,1), (5,1,1,1,1,2,1), (3,2,1,1,1,3,1), (3,2,2,1,1,2,1), (3,2,1,2,1,2,1), (4,2,1,1,1,1,2)
(3,1,1,1,1,2,1,2) = blues octatonic = 8-13A [up]
(3,2,1,2,1,1,1,1)
(3,1,2,3,1,1,1), (3,1,1,2,2,1,2), (5,1,1,1,1,2,1), (3,2,1,1,2,1,2), (3,1,2,1,2,1,2), (3,3,1,1,1,1,2), (3,2,3,1,1,1,1), (4,1,1,1,2,1,2)
dim, 137, maj, 134, 1b33, 44, 1b37, 13b7, 13b5, 1b34, tt4, 4tt, 2m2, 1b3b7, 22, m22, min, m2m2
(3,1,2,1,1,2,1,1) = forte class 8-19B = 8-19B [up]
(3,1,1,2,1,1,2,1)
(3,1,2,1,3,1,1), (3,1,3,1,2,1,1), (4,1,2,1,1,2,1), (3,1,2,2,2,1,1), (4,2,1,1,2,1,1), (3,3,1,1,2,1,1), (3,1,2,1,1,2,2)
(4,1,3,1,2,1), (3,3,1,1,2,2), (3,1,3,1,2,2), (4,2,1,3,1,1), (4,2,1,1,2,2), (3,1,2,2,2,2), (4,1,1,3,1,2), (3,3,2,2,1,1), (3,2,3,1,2,1), (5,1,2,1,1,2), (3,3,1,3,1,1), (4,3,1,2,1,1), (4,2,2,2,1,1), (3,3,1,1,3,1), (6,1,1,2,1,1), (3,1,3,1,3,1), (5,2,1,1,2,1), (4,1,2,2,2,1), (4,2,1,1,3,1), (4,1,2,1,3,1), (4,1,2,1,1,3), (4,3,1,1,2,1)
(3,1,1,1,3,1,1,1) = Messiaen's mode 4 = 8-9 [up]
(3,1,1,1,3,1,1,1)
(4,1,1,1,3,1,1), (4,1,1,3,1,1,1), (3,2,1,3,1,1,1), (3,1,2,3,1,1,1)
(3,2,1,3,1,2), (4,1,1,3,2,1), (4,1,1,1,3,2), (3,3,3,1,1,1), (5,1,1,3,1,1), (4,2,1,3,1,1), (4,1,2,3,1,1), (4,1,1,3,1,2), (3,1,2,3,1,2), MttM, (5,1,1,1,3,1), (4,1,4,1,1,1), (5,1,3,1,1,1), (4,2,3,1,1,1), (4,1,1,4,1,1)
dim, 1b34, maj, 134, 1b33, 44, 1b37, 13b7, 137, 13b5, tt4, 4tt, 2m2, 1b3b7, m22, m2m2, min
(3,1,1,3,1,1,1,1) = forte class 8-8 = 8-8 [up]
(3,1,1,3,1,1,1,1)
(4,1,1,3,1,1,1), (3,1,2,1,3,1,1), (4,1,1,1,3,1,1), (4,1,3,1,1,1,1), (3,1,1,3,1,1,2), (3,2,1,1,3,1,1), (3,2,3,1,1,1,1), (4,1,1,1,1,3,1)
(3,1,3,1,1,1,1,1) = forte class 8-7 = 8-7 [up]
(3,1,3,1,1,1,1,1)
(4,3,1,1,1,1,1), (3,1,3,1,1,1,2), (3,2,1,1,1,3,1), (3,1,3,1,2,1,1), (4,1,3,1,1,1,1), (4,1,1,1,1,1,3), (3,1,3,1,1,2,1), (4,1,1,1,1,3,1)
(3,3,1,1,1,1,1,1) = forte class 8-3 = 8-3 [up]
(3,3,1,1,1,1,1,1)
(4,3,1,1,1,1,1), (6,1,1,1,1,1,1), (3,3,1,1,1,2,1), (3,3,1,2,1,1,1), (4,1,1,1,1,1,3), (3,3,1,1,1,1,2), (3,3,1,1,2,1,1), (3,3,2,1,1,1,1)
(4,1,2,1,1,1,1,1) = forte class 8-4B = 8-4B [up]
(4,1,1,1,1,1,2,1)
(4,3,1,1,1,1,1), (5,1,2,1,1,1,1), (4,1,2,1,2,1,1), (5,2,1,1,1,1,1), (4,1,3,1,1,1,1), (4,1,2,1,1,2,1), (4,1,2,2,1,1,1), (4,1,2,1,1,1,2)
(4,1,1,1,2,1,1,1) = forte class 8-6 = 8-6 [up]
(4,1,1,1,2,1,1,1)
(4,1,1,3,1,1,1), (5,1,1,1,2,1,1), (4,2,1,2,1,1,1), (4,1,1,1,3,1,1), (5,1,1,2,1,1,1), (4,1,1,1,2,2,1), (4,1,2,2,1,1,1), (4,1,1,1,2,1,2)
dim, 1b34, maj, 134, 1b33, 44, 1b37, 13b7, 137, 13b5, tt4, 4tt, 2m2, 1b3b7, 22, m22, min, m2m2
(4,1,1,2,1,1,1,1) = forte class 8-5B = 8-5B [up]
(4,1,1,1,1,2,1,1)
(4,1,1,3,1,1,1), (4,1,1,2,2,1,1), (4,2,2,1,1,1,1), (5,1,2,1,1,1,1), (4,1,1,2,1,2,1), (4,1,3,1,1,1,1), (5,1,1,2,1,1,1), (4,1,1,2,1,1,2)
(4,2,1,1,1,1,1,1) = forte class 8-2B = 8-2B [up]
(4,1,1,1,1,1,1,2)
(4,3,1,1,1,1,1), (6,1,1,1,1,1,1), (4,2,2,1,1,1,1), (4,2,1,1,2,1,1), (5,2,1,1,1,1,1), (4,2,1,1,1,2,1), (4,2,1,2,1,1,1), (4,2,1,1,1,1,2)
(4,1,1,1,1,1,1,2) = forte class 8-2A = 8-2A [up]
(4,2,1,1,1,1,1,1)
(6,1,1,1,1,1,1), (4,1,1,2,1,1,2), (4,1,1,1,1,1,3), (4,2,1,1,1,1,2), (4,1,2,1,1,1,2), (4,1,1,1,2,1,2), (4,1,1,1,1,2,2), (5,1,1,1,1,1,2)
(4,1,1,1,1,2,1,1) = forte class 8-5A = 8-5A [up]
(4,1,1,2,1,1,1,1)
(4,1,1,2,2,1,1), (4,2,1,1,2,1,1), (5,1,1,1,2,1,1), (4,1,2,1,2,1,1), (5,1,1,1,1,2,1), (4,1,1,1,3,1,1), (4,1,1,1,1,2,2), (4,1,1,1,1,3,1)
(4,1,1,1,1,1,2,1) = forte class 8-4A = 8-4A [up]
(4,1,2,1,1,1,1,1)
(4,1,1,2,1,2,1), (4,2,1,1,1,2,1), (5,1,1,1,1,2,1), (4,1,2,1,1,2,1), (4,1,1,1,2,2,1), (4,1,1,1,1,1,3), (5,1,1,1,1,1,2), (4,1,1,1,1,3,1)
(5,1,1,1,1,1,1,1) = chromatic octamirror = 8-1 [up]
(5,1,1,1,1,1,1,1)
(5,1,1,1,1,2,1), (5,1,1,2,1,1,1), (6,1,1,1,1,1,1), (5,1,2,1,1,1,1), (5,1,1,1,2,1,1), (5,2,1,1,1,1,1), (5,1,1,1,1,1,2)
(6,1,1,1,2,1), (6,2,1,1,1,1), (5,1,1,3,1,1), (5,1,1,1,2,2), (7,1,1,1,1,1), (5,1,2,1,1,2), (5,1,1,2,1,2), (5,2,1,1,1,2), (5,1,2,2,1,1), (5,2,1,2,1,1), (5,2,2,1,1,1), (5,1,2,1,2,1), (6,1,1,2,1,1), (5,1,1,2,2,1), (5,2,1,1,2,1), (6,1,1,1,1,2), (5,1,1,1,3,1), (5,1,1,1,1,3), (5,1,3,1,1,1), (6,1,2,1,1,1), (5,3,1,1,1,1)
dim, 137, maj, 134, 1b33, 13b7, 44, 1b37, 1b34, 13b5, tt4, 4tt, 2m2, 1b3b7, 22, m22, min, m2m2
Go to n-chords, for n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
(2,1,2,1,2,1,1,1,1) = forte class 9-10 = 9-10 [up]
(2,1,2,1,2,1,1,1,1)
(3,1,1,1,1,2,1,2), (2,2,1,1,2,1,2,1), (3,2,1,1,1,1,2,1), (2,2,1,2,1,2,1,1), (3,1,2,1,2,1,1,1), (3,1,2,1,1,1,1,2), (3,1,1,1,2,1,2,1), (3,2,1,2,1,1,1,1), (2,1,2,1,2,1,2,1)
(2,1,1,2,1,1,2,1,1) = Messiaen's mode 3 = 9-12 [up]
(2,1,1,2,1,1,2,1,1)
(3,1,2,1,1,2,1,1), (3,1,1,2,1,1,2,1), (2,2,2,1,1,2,1,1)
(2,2,2,2,2,1,1), (3,3,1,1,2,1,1), (3,1,2,2,2,1,1), (4,2,1,1,2,1,1), (3,1,3,1,2,1,1), (3,1,2,1,3,1,1), (4,1,1,2,1,1,2), (3,2,2,1,1,2,1), (4,1,2,1,1,2,1), (3,1,3,1,1,2,1), (3,1,2,1,1,2,2), (3,1,1,2,2,2,1)
(2,2,1,2,1,1,1,1,1) = forte class 9-7B = 9-7B [up]
(2,2,1,1,1,1,1,2,1)
(2,2,2,1,2,1,1,1), (2,2,1,2,1,2,1,1), (4,1,2,1,1,1,1,1), bebopmajor, (3,2,1,1,1,1,1,2), bebopdominant, (3,1,1,1,1,2,2,1), (3,2,1,2,1,1,1,1), (3,1,1,1,1,1,2,2)
(2,2,1,1,2,1,1,1,1) = forte class 9-8B = 9-8B [up]
(2,2,1,1,1,1,2,1,1)
(3,1,1,1,2,2,1,1), (4,1,1,2,1,1,1,1), (3,2,1,1,2,1,1,1), (2,2,2,2,1,1,1,1), (2,2,1,1,2,2,1,1), (2,2,2,1,1,2,1,1), (3,1,2,1,1,1,1,2), (3,1,1,1,1,2,2,1), (2,2,1,1,2,1,2,1)
(2,2,2,1,1,1,1,1,1) = forte class 9-6 = 9-6 [up]
(2,2,2,1,1,1,1,1,1)
(2,2,2,1,2,1,1,1), (4,1,1,1,1,1,1,2), (3,2,2,1,1,1,1,1), (2,2,2,2,1,1,1,1), (4,2,1,1,1,1,1,1), (2,2,2,1,1,2,1,1), (2,2,2,1,1,1,2,1), (3,1,1,1,1,1,2,2)
(2,2,1,1,1,2,1,1,1) = forte class 9-9 = 9-9 [up]
(2,2,1,1,1,2,1,1,1)
(2,2,2,1,2,1,1,1), (3,2,1,1,1,2,1,1), (3,1,1,1,2,2,1,1), (3,1,1,2,2,1,1,1), (3,1,1,2,1,1,1,2), bebopdominant, (2,2,2,1,1,1,2,1), (4,1,1,1,2,1,1,1)
(2,1,2,1,1,1,2,1,1) = forte class 9-11A = 9-11A [up]
(2,1,2,1,1,2,1,1,1)
(3,1,1,1,2,1,1,2), (3,1,1,2,1,1,2,1), (2,2,1,1,2,1,2,1), bebopmajor, (3,1,2,1,1,1,2,1), (3,1,2,1,2,1,1,1), (2,2,2,1,2,1,1,1), (3,2,1,1,1,2,1,1), (3,1,1,2,1,2,1,1)
(2,2,1,1,1,1,1,2,1) = nonatonic blues = 9-7A [up]
(2,2,1,2,1,1,1,1,1)
(3,1,2,2,1,1,1,1), (2,2,1,1,2,1,2,1), bebopmajor, (3,2,2,1,1,1,1,1), (3,2,1,1,1,1,1,2), bebopdominant, (3,1,1,1,1,2,1,2), (2,2,2,1,1,1,2,1), (4,1,1,1,1,1,2,1)
(2,2,1,1,1,1,2,1,1) = forte class 9-8A = 9-8A [up]
(2,2,1,1,2,1,1,1,1)
(3,1,1,1,2,1,1,2), (3,1,2,2,1,1,1,1), (3,2,1,1,1,1,2,1), (3,1,1,2,2,1,1,1), (2,2,1,2,1,2,1,1), (2,2,2,2,1,1,1,1), (2,2,1,1,2,2,1,1), (2,2,2,1,1,2,1,1), (4,1,1,1,1,2,1,1)
(2,1,2,1,1,2,1,1,1) = diminishing nonachord = 9-11B [up]
(2,1,2,1,1,1,2,1,1)
(2,2,1,2,1,2,1,1), (3,1,1,2,1,1,1,2), (3,1,2,1,1,2,1,1), (3,2,1,1,2,1,1,1), bebopmajor, (3,1,2,1,1,1,2,1), (3,1,1,1,2,1,2,1), (2,2,2,1,1,1,2,1), (3,1,1,2,1,2,1,1)
(3,1,1,1,1,1,1,1,2) = forte class 9-2A = 9-2A [up]
(3,2,1,1,1,1,1,1,1)
(3,3,1,1,1,1,1,1), (3,1,1,1,1,2,1,2), (4,1,1,1,1,1,1,2), (3,1,1,2,1,1,1,2), (3,1,1,1,2,1,1,2), (3,2,1,1,1,1,1,2), (5,1,1,1,1,1,1,1), (3,1,2,1,1,1,1,2), (3,1,1,1,1,1,2,2)
(3,1,1,1,2,1,1,1,1) = forte class 9-5B = 9-5B [up]
(3,1,1,1,1,2,1,1,1)
(3,1,1,1,2,1,1,2), (3,1,2,2,1,1,1,1), (3,1,1,1,2,2,1,1), (4,1,1,2,1,1,1,1), (3,1,1,1,3,1,1,1), (3,1,1,1,2,1,2,1), (3,1,1,3,1,1,1,1), (3,2,1,2,1,1,1,1), (4,1,1,1,2,1,1,1)
(3,1,1,2,1,1,1,1,1) = forte class 9-4B = 9-4B [up]
(3,1,1,1,1,1,2,1,1)
(3,1,1,2,1,1,2,1), (4,1,1,2,1,1,1,1), (3,1,1,2,1,1,1,2), (4,1,2,1,1,1,1,1), (3,2,2,1,1,1,1,1), (3,1,3,1,1,1,1,1), (3,1,1,3,1,1,1,1), (3,1,1,2,2,1,1,1), (3,1,1,2,1,2,1,1)
(3,1,1,1,1,2,1,1,1) = forte class 9-5A = 9-5A [up]
(3,1,1,1,2,1,1,1,1)
(3,1,1,1,1,2,1,2), (4,1,1,1,1,2,1,1), (3,2,1,1,2,1,1,1), (3,1,2,1,2,1,1,1), (3,1,1,1,3,1,1,1), (3,1,1,1,1,2,2,1), (3,1,1,3,1,1,1,1), (3,1,1,2,2,1,1,1), (4,1,1,1,2,1,1,1)
(3,1,1,1,1,1,2,1,1) = forte class 9-4A = 9-4A [up]
(3,1,1,2,1,1,1,1,1)
(3,2,1,1,1,2,1,1), (3,1,1,1,2,2,1,1), (4,1,1,1,1,2,1,1), (3,1,2,1,1,2,1,1), (3,1,3,1,1,1,1,1), (3,1,1,3,1,1,1,1), (4,1,1,1,1,1,2,1), (3,1,1,2,1,2,1,1), (3,1,1,1,1,1,2,2)
(3,1,2,1,1,1,1,1,1) = forte class 9-3B = 9-3B [up]
(3,1,1,1,1,1,1,2,1)
(3,3,1,1,1,1,1,1), (3,1,2,2,1,1,1,1), (3,1,2,1,1,2,1,1), (4,1,2,1,1,1,1,1), (3,1,2,1,1,1,2,1), (3,1,3,1,1,1,1,1), (3,1,2,1,2,1,1,1), (4,2,1,1,1,1,1,1), (3,1,2,1,1,1,1,2)
(3,2,1,1,1,1,1,1,1) = forte class 9-2B = 9-2B [up]
(3,1,1,1,1,1,1,1,2)
(3,3,1,1,1,1,1,1), (3,2,1,1,1,2,1,1), (3,2,1,1,1,1,2,1), (3,2,1,1,2,1,1,1), (3,2,2,1,1,1,1,1), (3,2,1,1,1,1,1,2), (4,2,1,1,1,1,1,1), (5,1,1,1,1,1,1,1), (3,2,1,2,1,1,1,1)
(3,1,1,1,1,1,1,2,1) = forte class 9-3A = 9-3A [up]
(3,1,2,1,1,1,1,1,1)
(3,3,1,1,1,1,1,1), (3,1,1,2,1,1,2,1), (4,1,1,1,1,1,1,2), (3,2,1,1,1,1,2,1), (3,1,2,1,1,1,2,1), (3,1,3,1,1,1,1,1), (3,1,1,1,2,1,2,1), (3,1,1,1,1,2,2,1), (4,1,1,1,1,1,2,1)
(4,1,1,1,1,1,1,1,1) = chromatic nonamirror = 9-1 [up]
(4,1,1,1,1,1,1,1,1)
(4,1,1,1,1,1,1,2), (4,1,1,2,1,1,1,1), (4,1,1,1,1,2,1,1), (4,1,2,1,1,1,1,1), (4,2,1,1,1,1,1,1), (5,1,1,1,1,1,1,1), (4,1,1,1,2,1,1,1), (4,1,1,1,1,1,2,1)
Go to n-chords, for n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
(2,1,1,1,1,2,1,1,1,1) = Messiaen's mode 7 = 10-6 [up]
(2,1,1,1,1,2,1,1,1,1)
(2,2,1,1,2,1,1,1,1), (2,2,1,1,1,1,2,1,1), (3,1,1,1,1,2,1,1,1), (2,1,2,1,2,1,1,1,1), (3,1,1,1,2,1,1,1,1)
(3,1,1,1,2,1,1,2), (3,1,2,2,1,1,1,1), (2,2,1,1,2,1,2,1), (4,1,1,2,1,1,1,1), (2,2,1,2,1,2,1,1), (3,1,1,1,2,2,1,1), (2,2,2,1,1,2,1,1), (3,1,2,1,2,1,1,1), (3,1,1,1,3,1,1,1), (3,1,1,1,1,2,2,1), (3,1,2,1,1,1,1,2), (3,1,1,2,2,1,1,1), (3,1,1,1,2,1,2,1), (3,2,1,2,1,1,1,1), (4,1,1,1,2,1,1,1), (2,1,2,1,2,1,2,1), (3,1,1,1,1,2,1,2), (3,2,1,1,1,1,2,1), (4,1,1,1,1,2,1,1), (3,2,1,1,2,1,1,1), (2,2,2,2,1,1,1,1), (2,2,1,1,2,2,1,1), (3,1,1,3,1,1,1,1)
(2,1,1,1,2,1,1,1,1,1) = major-minor mixed = 10-5 [up]
(2,1,1,1,2,1,1,1,1,1)
(2,1,2,1,1,2,1,1,1), (3,1,1,1,1,2,1,1,1), (3,1,1,2,1,1,1,1,1), (2,2,1,2,1,1,1,1,1), (2,2,1,1,1,2,1,1,1), (3,1,1,1,1,1,2,1,1), (3,1,1,1,2,1,1,1,1), (2,1,2,1,1,1,2,1,1), (2,2,1,1,1,1,1,2,1)
(2,2,1,1,1,1,1,1,1,1) = forte class 10-2 = 10-2 [up]
(2,2,1,1,1,1,1,1,1,1)
(3,1,1,1,1,1,1,1,2), (2,2,1,1,1,2,1,1,1), (2,2,1,2,1,1,1,1,1), (2,2,1,1,2,1,1,1,1), (2,2,1,1,1,1,2,1,1), (4,1,1,1,1,1,1,1,1), (2,2,2,1,1,1,1,1,1), (2,2,1,1,1,1,1,2,1), (3,2,1,1,1,1,1,1,1)
(2,1,2,1,1,1,1,1,1,1) = forte class 10-3 = 10-3 [up]
(2,1,2,1,1,1,1,1,1,1)
(2,1,2,1,1,2,1,1,1), (2,1,2,1,2,1,1,1,1), (3,1,1,1,1,1,1,1,2), (2,2,1,2,1,1,1,1,1), (2,1,2,1,1,1,2,1,1), (3,1,1,1,1,1,1,2,1), (3,1,2,1,1,1,1,1,1), (2,2,1,1,1,1,1,2,1), (3,2,1,1,1,1,1,1,1)
(2,1,1,2,1,1,1,1,1,1) = forte class 10-4 = 10-4 [up]
(2,1,1,2,1,1,1,1,1,1)
(2,1,2,1,1,2,1,1,1), (3,1,1,2,1,1,1,1,1), (3,1,1,1,1,1,2,1,1), (2,1,2,1,1,1,2,1,1), (2,2,1,1,1,1,2,1,1), (2,2,1,1,2,1,1,1,1), (3,1,2,1,1,1,1,1,1), (3,1,1,1,1,1,1,2,1), (2,2,2,1,1,1,1,1,1), (2,1,1,2,1,1,2,1,1)
(3,1,1,1,1,1,1,1,1,1) = chromatic decamirror = 10-1 [up]
(3,1,1,1,1,1,1,1,1,1)
(3,1,1,2,1,1,1,1,1), (3,1,1,1,1,2,1,1,1), (3,1,1,1,1,1,1,1,2), (3,1,1,1,2,1,1,1,1), (3,1,1,1,1,1,2,1,1), (3,1,2,1,1,1,1,1,1), (3,1,1,1,1,1,1,2,1), (4,1,1,1,1,1,1,1,1), (3,2,1,1,1,1,1,1,1)
Go to n-chords, for n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
(2,1,1,1,1,1,1,1,1,1,1) = chromatic undecamirror = 11-1 [up]
(2,1,1,1,1,1,1,1,1,1,1)
Go to n-chords, for n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
(1,1,1,1,1,1,1,1,1,1,1,1) = aggregate = 12-1 [up]
(1,1,1,1,1,1,1,1,1,1,1,1)