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Abstract

An arithmetical discrete plane is said to have critical connecting thickness if its thickness
is equal to the infimum of the set of values that preserve its 2-connectedness. This infimum
thickness can be computed thanks to the fully subtractive algorithm. This multidimensional
continued fraction algorithm consists, in its linear form, in subtracting the smallest entry to
the other ones. We provide a characterization of the discrete planes with critical thickness
that have zero intercept and that are 2-connected. Our tools rely on the notion of dual
substitution which is a geometric version of the usual notion of substitution acting on words.
We associate with the fully subtractive algorithm a set of substitutions whose incidence matrix
is provided by the matrices of the algorithm, and prove that their geometric counterparts
generate arithmetic discrete planes.

1 Introduction

This paper studies the connectedness of thin arithmetic discrete planes in the three-dimensional
space. We focus on the notion of 2-connectedness, and we restrict ourselves to planes with zero
intercept that have critical thickness, that is, planes whose thickness is the infimum of the set of
all the ω ∈ R+ such that the plane of thickness ω is 2-connected (see Definitions 2.1 and 2.5).
Let us recall that standard arithmetic discrete planes are known to be 2-connected, whereas
naive ones are too thin to be 2-connected. We thus consider planes with a thickness that lies
between the naive and the standard cases.

The problem of the computation of the critical thickness was raised in [BB04]. It has been
answered in [JT06, JT09, DJT09], with an algorithm (called the connecting thickness algorithm)
that can be expressed in terms of a multidimensional continued fraction algorithm, namely the
so-called fully subtractive algorithm. The connecting thickness algorithm explicitly yields the
value of the critical thickness when it halts, and this value can be computed when the algorithm
enters a loop (possibly infinite). Furthermore, the set F3 of vectors for which the algorithm
enters an infinite loop has Lebesgue measure zero, as a consequence of results of [MN89] in
the context of a percolation model defined by rotations on the unit circle. Our main goal is
to provide a necessary and sufficient condition so that a discrete plane with intercept zero and
critical thickness is 2-connected when its normal vector belongs to F3.

The tools we use here are combinatorial and are issued from numeration systems and
combinatorics on words. Our methods rely on a combinatorial generation method based on the
notion of substitution for the planes under study (see Section 2.3 for more details). In Section 3,
we construct a sequence of finite patterns (Tn)n of the planes with critical thickness, and we
prove that these patterns are all 2-connected when the parameters belong to F3. We then relate
these finite patterns Tn with thinner patterns Pn that belong to the naive discrete plane with
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same parameters. These pattern are generated in terms of a geometric interpretation of the fully
subtractive algorithm via the geometric formalism of dual substitutions. Finally, in Section 4, the
thinner patterns Pn are proved to generate the full naive plane. This yields the 2-connectedness
of the critical plane (see Section 5). In other words, we use the fact that the underlying naive
plane provides a relatively dense skeleton of the critical plane. Theorem 5.6 highlights the limit
behavior of discrete plane with critical thickness which is reminiscent of similar phenomena
occurring in percolation theory [Mee89].

Note that in [DV12], Domenjoud and Vuillon also studied the same patterns from the
viewpoint of geometrical closure (an analogue of palindromic closure in word combinatorics), and
used symmetries to build them. From this approach, they deduced topological results (including
connectedness) and showed how these patterns generalize Christoffel words to higher dimensions.
The present use of substitutions in order to address the problem of connectedness provides an
original viewpoint on these objects. This paper is an extended version of [BJJP13]. It also
extends the study of [BDJP14] devoted to particular planes the parameters of which belong to
the cubic extension generated by the Tribonacci number. Observe also that similar results in
higher dimension have been proved in [DPV14].

2 Basic notions and notation

2.1 Discrete and stepped planes

Let (e1, e2, e3) be the canonical basis of R3, and let 〈·, ·〉 stand for the usual scalar product on
R3. Given v ∈ R3 and i ∈ {1, 2, 3}, we let vi = 〈v, ei〉 denote the ith coordinate of v in the basis
(e1, e2, e3).

Definition 2.1 (Arithmetical discrete plane [Rev91, And03]). Given v ∈ R3
+ and ω ∈ R+, the

arithmetical discrete plane with normal vector v and thickness ω is the set P(v, ω) defined as
follows:

P(v, ω) =
{
x ∈ Z3 : 0 6 〈x,v〉 < ω

}
.

If ω = ‖v‖∞ = max{|v1|, |v2|, |v3|} (resp. ω = ‖v‖1 = |v1|+ |v2|+ |v3|), then P(v, ω) is said to
be a naive arithmetical discrete plane (resp. standard arithmetical discrete plane).

Note that we consider here only planes with zero intercept, where the intercept µ allows the
more general definition

{
x ∈ Z3 : 0 6 〈x,v〉+ µ < ω

}
. Even if any finite subset of a digitized

plane can be represented as a subset of an arithmetical discrete plane with integer parameters
(by taking a suitable ω large enough), we do not restrict ourselves here to finite sets and we
consider general arithmetical discrete plane with possibly non-integer parameters.

We will also deal with another discrete approximation of Euclidean planes, namely stepped
planes. They can be considered as a more geometrical version, in the sense that they consist of
unit faces instead of just points of Z3.

Definition 2.2 (Unit faces, stepped planes). A unit face [x, i]? is defined as:

[x, 1]? = {x + λe2 + µe3 : λ, µ ∈ [0, 1]} =
[x, 2]? = {x + λe1 + µe3 : λ, µ ∈ [0, 1]} =
[x, 3]? = {x + λe1 + µe2 : λ, µ ∈ [0, 1]} =

where i ∈ {1, 2, 3} is the type of [x, i]?, and x ∈ Z3 is the distinguished vertex of [x, i]?. Let
v ∈ R3

+. The stepped plane Γv is the union of unit faces defined by:

Γv = {[x, i]? : 0 6 〈x,v〉 < 〈ei,v〉}.

The notation x + [y, i]? stands for the unit face [x + y, i]?.
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Remark 2.3. The set of distinguished vertices of Γv is the naive arithmetical discrete plane
P(v, ‖v‖∞), whereas the set of all vertices of the faces of Γv is the standard arithmetical discrete
plane P(v, ‖v‖1) (see [ABI02, ABS04]).

2.2 Connecting thickness and the fully subtractive algorithm

Definition 2.4 (Adjacency, connectedness). Two distinct elements x and y of Z3 are 2-adjacent
if ‖x − y‖1 = 1. A subset A ⊆ Z3 is 2-connected if it is not empty and if for every x,y ∈ A,
there exist x1, . . . ,xn ∈ A such that xi and xi+1 are 2-adjacent for all i ∈ {1, . . . , n− 1}, with
x1 = x and xn = y.

We stress the fact that a 2-connected set is assumed here to be non-empty. This will prove
to be more convenient for the notion of connecting thickness.

Definition 2.5 (Connecting thickness [JT06]). Given v ∈ R3
+, the connecting thickness Ω(v) is

defined by:
Ω(v) = inf {ω ∈ R+ : P(v, ω) is 2-connected} .

The two above definitions are illustrated in Figure 1. Note that these definitions focus on
2-connectedness, but similar definitions are also possible for κ-connectedness with κ = 0 or 1 (in
Z3). However, the value of Ω(v) for such alternative definitions can be directly deduced from the
value of Ω(v) for 2-connectedness (see [JT06]), so it is natural to restrict to 2-connectedness.

(a) ω = 1 (b) ω = 2.5

(c) ω = 4 (d) ω = 6

Figure 1: The arithmetical discrete plane P(v, ω) with v = (1,
√

2, π) and varying thicknesses ω.
In (a) and (b), P(v, 1) and P(v, 2.5) are not 2-connected, but in (c) and (d), P(v, 4) and P(v, 6)
are 2-connected. It follows that 2.5 6 Ω(v) 6 4.

Computing the connecting thickness A first observation which follows easily from the
definitions is that for every ε > 0, the discrete plane P (v,Ω(v)− ε) is not 2-connected. Moreover,
a first approximation of Ω(v) is provided by ‖v‖∞ 6 Ω(v) 6 ‖v‖1 (see [AAS97, Lemma 10]) and
implies that, for every ε > 0, P (v,Ω(v) + ε) is 2-connected. Consequently, one deduces that the
set {ω ∈ R+ : P(v, ω) is 2-connected} is an interval.

It is shown in [JT09] how to compute Ω(v) from the expansion of the vector v by using
the fully subtractive algorithm. Given a vector v = (v1,v2,v3) with v1 = min(v1,v2,v3), this
algorithm is defined as FS(v) = (v1,v2 − v1,v3 − v1). The fully subtractive algorithm is one of
the many possible generalizations of the Euclid algorithm; it consists in subtracting the smallest
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coordinate to all the other coordinates. It yields a well-studied multidimensional continued
fraction algorithm (see e.g. [KM95, FKN11, Sch00, TZ03]).

In order to compute Ω(v) we may assume without loss of generality that 0 6 v1 6 v2 6 v3. We
thus restrict ourselves in the sequel to the set of parameters O+

3 =
{
v ∈ R3 : 0 6 v1 6 v2 6 v3

}
and consider the ordered fully subtractive algorithm F : O+

3 → O
+
3 defined by:

F(v) =


(v1,v2 − v1,v3 − v1) if v1 6 v2 − v1 6 v3 − v1
(v2 − v1,v1,v3 − v1) if v2 − v1 < v1 6 v3 − v1
(v2 − v1,v3 − v1,v1) if v2 − v1 6 v3 − v1 < v1.

Iterating F on a vector v ∈ O+
3 yields an infinite sequence of vectors (v(n))n>0 defined by

v(n) = Fn(v) and v(0) = v. This can be rewritten in matrix form by v = MFS
i1 . . .MFS

in v(n),
where the matrices MFS

1 , MFS
2 and MFS

3 are defined by

MFS
1 =

1 0 0
1 1 0
1 0 1

 , MFS
2 =

0 1 0
1 1 0
0 1 1

 , MFS
3 =

0 0 1
1 0 1
0 1 1

 .
The F-expansion of v is the sequence (in)n>0 ∈ {1, 2, 3}N defined above, that is, the sequence
(in)n>0 such that v(n) = MFS

in

−1v(n−1) for all n > 1.
The link between the connecting thickness and the fully subtractive algorithm F is provided

by the following algorithm that we call the connecting thickness algorithm:
def connecting_thickness(v):

if v1 + v2 6 v3: return v3
else: return v1 + connecting_thickness(F(v))

For some input vectors, the above algorithm never stops. Let F3 be this set of vectors:

F3 =
{
v ∈ O+

3 : v(n)
1 + v(n)

2 > v(n)
3 for all n ∈ N

}
.

This set has been studied in [Mee89], and its properties are similar to that of the Rauzy
gasket [AS13]. It will play a crucial role in the characterization stated in Theorem 5.6.
Theorem 2.6 ([JT09],[DJT09]). Let v ∈ O+

3 . The arithmetical discrete plane P(v, ω) is 2-
connected if and only if so is P(F(v), ω − v1). Consequently, P(v,Ω(v)) is 2-connected if and
only if so is P(F(v),Ω(F(v)),

Ω(v) = Ω(F(v)) + v1,

and,

Ω(v) =
{

connecting_thichness(v) if v 6∈ F3,∑∞
n=0 v(n)

1 if v ∈ F3.

Moreover, if v ∈ F3 then

Ω(v) =
∞∑
n=0

v(n)
1 = ‖v‖1/2.

Proof. According to Theorem 2.6, we have: v1 + v2 + v3 − 2Ω(v) = v(i)
1 + v(i)

2 + v(i)
3 − 2Ω(v(i))

for all i ∈ {1, . . . , n}. Since Ω(v(n)) 6 ‖v(n)‖1 and limn→∞ v(n) = 0, then limn→∞Ω(v(n)) = 0
and the result follows.

Example 2.7. Let v = (1,
√

13,
√

17). Iterating F yields

v(1) = (1,
√

13− 1,
√

17− 1)
v(2) = (1,

√
13− 2,

√
17− 2)

v(3) = (
√

13− 3, 1,
√

17− 3)
v(4) = (4−

√
13,
√

17−
√

13,
√

13− 3)
v(5) = (

√
17− 4, 2

√
13− 7, 4−

√
13).
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The connecting thickness algorithm stops because v(5)
1 + v(5)

2 6 v(5)
3 , so Ω(v) = 1 + 1 + 1 +√

13 − 3 + 4 −
√

13 + 4 −
√

13 = 8 −
√

13. Similarly, if v = (1, 3√10, π), then the algorithm
stops after 19 steps and Ω(v) = 2π − 98 3√10 + 208. It is also possible to exhibit some examples
where the algorithm never stops, for instance by choosing a right eigenvector of a finite product
of the matrices MFS

i , for i = 1, 2, 3, of F. This is the case for example with the vector
v = (1, α+1, α2+α+1) = (1, 1.54 . . . , 1.84 . . .), where α = 0.54 . . . is the real root of x3+x2+x+1.

The next property provides a characterization with respect to the F-expansion of a vector v
of its belonging to F3.

Lemma 2.8. We have v ∈ F3 if and only if the F-expansion (in)n of v under the ordered fully
subtractive algorithm contains infinitely many occurrences of 3.

Proof. Let v ∈ F3, and assume by contradiction that (in)n∈N does not take the value 3. One
thus checks that limn→∞ v(n)

1 = limn→∞ v(n)
2 = 0, and hence, limn→∞ v(n)

3 = 0. Furthermore,
v(n+1)

1 + v(n+1)
2 + v(n+1)

3 + 2v(n)
1 = v(n)

1 + v(n)
2 + v(n)

3 , for all n. Hence

v1 + v2 + v3
2 =

∑
n>1

v(n)
1 .

Note that the expansion of (v1,v2,v1 + v2) obtained by applying the ordered fully subtractive
algorithm F to (v1,v2,v1 + v2) coincides on the first two coordinates with the expansion of
(v1,v2,v3), that is, Fn(v1,v2,v1 + v2) = (v(n)

1 ,v(n)
2 ,v(n)

1 + v(n)
2 ) for all n > 1. Consequently,

here again v1 +v2 =
∑
n>1 v(n)

1 , which implies v3 = v1 +v2, a contradiction. Hence, the sequence
(in)n takes the value 3 at least once, and by repeating the argument, infinitely many times.

Conversely, assume that v 6∈ F3. If v(n)
1 + v(n)

2 6 v(n)
3 for some n, then v(m)

1 + v(m)
2 6 v(m)

3
for all m > n, and in particular, v(m)

3 − v(m)
1 > v(m)

2 > v(m)
1 . This implies that the sequence

(im)m>n will never take the value 3.

Remark 2.9. If v(n)
1 + v(n)

2 < v(n)
3 for some n, then limn→∞ v(n) 6= 0. If v(n)

1 + v(n)
2 = v(n)

3
for some n, we can say nothing concerning the fact that limn→∞ v(n) = 0. Indeed, take v =
(v1,v1, 2v1) for some v1 > 0. Then limn→∞ v(n) = (0,v1,v1) 6= 0. Now take v = (1/ϕ2, 1/ϕ, 1)
with 1/ϕ+ 1/ϕ2 = 1 and ϕ > 0. One checks that limn→∞ v(n) = 0.

Proposition 2.10. If v ∈ F3, then dimQ(v1,v2,v3) = 3.

Proof. The present proof is inspired by [AD13]. Let v ∈ F3 and x ∈ Z3 such that 〈v,x〉 = 0.
We set sv = (

∑3
i=1 vi)/2. One can rewrite v as v = sv(

∑3
i=1 ei)−

∑3
i=1(sv − vi)ei, which yields

〈v,x〉 = sv(
∑3
i=1 xi)−

∑3
i=1(sv − vi)xi. The fact that 〈v,x〉 = 0 implies that

3∑
i=1

xi =
3∑
i=1

(1− vi/sv)xi.

Furthermore, one checks that 0 < 1− vi/sv < 1, for i = 1, 2, 3, since v ∈ F3. The matrices

AFS
1,v =

1− v1/sv 1− v2/sv 1− v3/sv
0 1 0
0 0 1

 , AFS
2,v =

 0 1 0
1− v1/sv 1− v2/sv 1− v3/sv

0 0 1

 ,

AFS
3,v =

 0 1 0
0 0 1

1− v1/sv 1− v2/sv 1− v3/sv


thus satisfy

AFS
i,v x = tMFS

i x, for all i. (1)
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for every x ∈ Z3 such that 〈v,x〉 = 0. We consider the matrix norm induced by the norm || ||∞,
that is, ||A|| = maxi=1,2,3

∑3
j=1 |aij |. The matrices AFS

i,v are nonnegative stochastic matrices.
Let (in)n ∈ {1, 2, 3}N be the F-expansion of v. One has Mn = MFS

in for all n. One sets
An = AFS

in,v(n−1) , and x(n) = tMn · · · tM1 x, for all n. Note that the vectors x(n) take integer
values. Since 〈v,x〉 = 0, we then have

〈v(1),x(1)〉 = 〈(MFS
i1,v)−1 v, tMFS

i1,v x〉 = 〈v,x〉 = 0.

More generally, one gets 〈v(n),x(n)〉 = 0, and (1) extends to

An+1 x(n) = tMn+1 x(n) and x(n) = An · · ·A1x.

The matrices An · · ·A1 are stochastic matrices, which yields that ||x(n)|| = ||A(n)x|| takes
bounded values. Furthermore, the vectors x(n) take integer values. There thus exist k, ` with
k < ` such that x(k) = x(`). Let us assume now x 6= 0. Then, x(k) 6= 0 (the matrices MFS

i,v are
unimodular), and x(k) is an eigenvector for A` · · ·Ak+1 for the eigenvalue 1.

Furthermore, we assume that `− k is large enough for ik+1 · · · i` to contain three times the
letter 3. We use here the assumption that v belongs to F3 together with Lemma 2.8. One then
checks that the matrix A` · · ·Ak+1 is irreducible, that is, for any index (i, j), there exists a power
of the matrix for which the corresponding entry is positive. Indeed, as soon as a matrix of type 3
occurs at least three times, one checks that the product of nonnative matrices A` · · ·Ak+1 is
irreducible.

By applying the Perron-Frobenius theorem to the nonnegative stochastic matrix A` · · ·Ak+1,
one deduces that x(k) is equal up to some multiplicative constant to the vector e1 + e2 + e3.
We deduce that all the coordinates of x(k) are nonzero and have the same sign, which gives a
contradiction with 〈v(k),x(k)〉 = 0.

2.3 Substitutions and dual substitutions

Let A = {1, 2, 3} be a finite alphabet and A? be the set of finite words over A.

Definition 2.11 (Substitution). A substitution over A is a morphism of the free monoid A?,
i.e., a function σ : A? → A? with σ(uv) = σ(u)σ(v) for all words u, v ∈ A?.

Given a substitution σ over A, the incidence matrix Mσ of σ is the square matrix of size
3× 3 defined by Mσ = (mij), where mi,j is the number of occurrences of the letter i in σ(j). A
substitution σ is unimodular if det Mσ = ±1.

Definition 2.12 (Dual substitution [AI01]). Let σ : {1, 2, 3}? −→ {1, 2, 3}? be a unimodular
substitution. The dual substitution E?

1(σ) is defined as

E?
1(σ)([x, i]?) = M−1

σ x +
⋃

(p,j,s)∈A?×A×A? : σ(j)=pis
[M−1

σ `(s), j]?,

where ` : w 7→ (|w|1, |w|2, |w|3) ∈ Z3 is the Parikh map counting the occurrences of each letter
in a word w. We extend the above definition to any union of unit faces: E?

1(σ)(P1 ∪ P2) =
E?

1(σ)(P1) ∪E?
1(σ)(P2).

Note that E?
1(σ ◦ σ′) = E?

1(σ′) ◦E?
1(σ) for unimodular σ and σ′ (see [AI01]).

Proposition 2.13 ([AI01, Fer05]). We have E?
1(σ)(Γv) = ΓtMσv for every stepped plane Γv

and unimodular substitution σ. Furthermore, the images of two distinct faces of Γv have no
common unit face.
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We now introduce the substitutions associated with the ordered fully subtractive algorithm,
which will be our main tool. Let

σFS
1 =


1 7→ 1
2 7→ 21
3 7→ 31

σFS
2 =


1 7→ 2
2 7→ 12
3 7→ 32

σFS
3 =


1 7→ 3
2 7→ 13
3 7→ 23.

The matrices occurring in the expansion of v according to the ordered fully subtractive algorithm
are the transposes of the matrices of incidence of the σFS

i , that is, MσFS
i

= tMFS
i for i ∈ {1, 2, 3}.

We denote by ΣFS
i the three dual substitutions E?

1(σFS
i ) for i ∈ {1, 2, 3}. They can be

represented as follows, where the black dot respectively stands for the distinguished vector of a
face and of its image.

ΣFS
1 :


7→
7→
7→

ΣFS
2 :


7→
7→
7→

ΣFS
3 :


7→
7→
7→

Lemma 2.14 (Preimages of unit faces by Σi). Let x =
( x
y
z

)
∈ Z3. We have

Σ−1
1 ([x, i]?) =


[( x+y+z

y
z

)
, 1
]? if i = 1[( x+y+z

y
z

)
, 1
]? ∪ [( x+y+z−1

y
z

)
, i
]? if i = 2, 3

,

Σ−1
2 ([x, i]?) =


[( y
x+y+z

z

)
, 2
]? if i = 1[( y

x+y+z
z

)
, 2
]? ∪ [( y

x+y+z−1
z

)
, i
]? if i = 2, 3

,

Σ−1
3 ([x, i]?) =


[( y

z
x+y+z

)
, 3
]? if i = 1[( y

z
x+y+z

)
, 3
]? ∪ [( y

z
x+y+z−1

)
, i
]? if i = 2, 3

.

3 Generating discrete planes by translations

We introduce in this section a sequence of 2-connected subsets (Tn)n∈N of Z3 that are contained
in arithmetic discrete planes with connecting thickness.

Definition 3.1 (Generation by translations). Let v ∈ F3 be a vector with F-expansion (in)n∈N.
Denote by Mn the matrix tMσFS

in
, for all n > 1. We define the sequence (Tn)n∈N of subsets of

Z3 as follows for all n > 0:

T0 = {0}, T1 = {0, e1}, Tn+1 = Tn ∪
(
Tn + t(M1 . . .Mn)−1 · e1

)
.

Note that the second initial condition T1 = {0, e1} is consistent with the usual convention
that an empty product of matrices is equal to the identity matrix.

Proposition 3.2. Let v ∈ F3. We have ∪∞n=0Tn ⊆ P(v,Ω(v)).

Proof. Let us prove that for all n ∈ N and x ∈ Tn, we have

〈x,v〉 <
n∑
i=0

v(i)
1 . (2)

The case n ∈ {0, 1} can be checked easily. Assume that Eq. (2) holds for some n > 1, and let
x ∈ Tn+1 = Tn ∪

(
Tn + t(M1 · · ·Mn)−1 · e1

)
. Then, two cases can occur.
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1. If x ∈ Tn then 〈x,v〉 <
n∑
i=0

v(i)
1 <

n+1∑
i=0

v(i)
1 .

2. If x ∈ Tn + t(M1 · · ·Mn)−1 · e1, then let y ∈ Tn be such that x = y + t(M1 · · ·Mn)−1 · e1.
We have

〈x,v〉 = 〈y + t(M1 · · ·Mn)−1 · e1,v〉
= 〈y,v〉+ 〈t(M1 · · ·Mn)−1 · e1,v〉
= 〈y,v〉+ 〈t(M1 · · ·Mn)−1 · e1,M1 . . .Mn · v(n)〉
= 〈y,v〉+ 〈e1,v(n)〉

= 〈y,v〉+ v(n)
1 <

n∑
i=0

v(i)
1 + v(n)

1 =
n+1∑
i=0

v(i)
1 .

Proposition 3.3. Let v ∈ F3. For all n ∈ N, the set Tn is 2-connected.

Proof. With the same arguments as in proof of Proposition 3.2, and by using Proposition 2.10,
we first get by induction that, for all n > 1:

Tn =
{

x ∈ Z3 : 〈x,v〉 =
n−1∑
i=0

εiv(i)
1 with εi ∈ {0, 1} for all i

}
.

Note that dimQ(v1,v2,v3) = 3 implies that for all x, y ∈ Z3, 〈x, v〉 = 〈y, v〉 ⇐⇒ x = y.
Now, for all n ∈ N, let xn ∈ Tn be such that 〈xn,v〉 =

∑n−1
i=0 v(i)

1 (we set x0 = 0). Let
us prove by induction the following property: for all n > 1, there exists in ∈ {1, 2, 3} such
that xn − ein ∈ Tn−1. This property implies that xn is 2-adjacent to Tn−1, which implies the
2-connectedness of Tn.

The induction property is true for n = 1 with x1 = e1. Let us now assume that the induction
hypothesis holds for n > 1. Let u1 · · ·un ∈ {1, 2, 3}N

? be such that MFS
u1 · · ·M

FS
unv(n) = v. We

have 〈xn+1,v〉 = 〈xn,v〉+ v(n)
1 , and by definition of the fully subtractive algorithm F:

v(n)
1 =

{
v(n−1)

1 , if un = 1
v(n−1)

2 − v(n−1)
1 , if un ∈ {2, 3}.

We distinguish several cases according to the values taken by u1 · · ·un.
Case 1. If un = 1, then, 〈xn+1,v〉 = 〈xn,v〉+ v(n−1)

1 , and

〈xn+1 − ein ,v〉 = 〈xn − ein︸ ︷︷ ︸
∈Tn−1

,v〉+ v(n−1)
1 =

n−2∑
i=1

εiv(i)
1 + v(n−1)

1 ,

where εi ∈ {0, 1} for 1 6 i 6 n − 2, which implies that xn+1 − ein ∈ Tn, so taking in+1 = in
yields the desired result.
Case 2. If un ∈ {2, 3} and u1 · · ·un−1 = 1k, then

〈xn+1,v〉 = 〈xn,v〉+ v(n−1)
2 − v(n−1)

1 = 〈xn−1,v〉+ v(n−1)
2

= 〈xn−2,v〉+ v(n−2)
2 = · · · = 〈xn−1−k,v〉+ v(n−1−k)

2 = v(0)
2 ,

which implies that xn+1 − e2 ∈ Tn.
Case 3. If un ∈ {2, 3} and u1 · · ·un−1 = · · · 21k with 0 6 k 6 n− 2, then

〈xn+1,v〉 = 〈xn,v〉+ v(n−1)
2 − v(n−1)

1 = 〈xn−1,v〉+ v(n−1)
2

= 〈xn−1−k,v〉+ v(n−1−k)
2 = 〈xn−1−k,v〉+ v(n−2−k)

1 ,
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so xn+1 − ein−1−k ∈ Tn−1−k ⊆ Tn.
Case 4. If un ∈ {2, 3} and u1 · · ·un−1 = w31k with w ∈ {1, 2}` and k > 0, then

〈xn+1,v〉 = 〈xn−1−k,v〉+ v(n−1−k)
2 = 〈xn−2−k,v〉+ v(n−2−k)

3

= 〈xn−2−k−`,v〉+ v(n−2−k−`)
3 = v(0)

3 ,

so xn+1 − e3 ∈ Tn.
Case 5. If un ∈ {2, 3} and u1 · · ·un−1 = · · · 3w31k with w ∈ {1, 2}`, k > 0, then

〈xn+1,v〉 = 〈xn−2−k−`,v〉+ v(n−2−k−`)
3

= 〈xn−2−k−`,v〉+ v(n−3−k−`)
1

so xn+1 − ein−2−k−` ∈ Tn−2−k−` ⊆ Tn.

4 Generation of naive planes with dual substitutions

The aim of this section is to introduce a second sequence (Pn)n∈N of patterns in Z3. These
patterns are sub-patterns of the Tn and they are obtained by applying generalized substitutions
according to the fully subtractive algorithm. We will prove that the patterns Pn cover naive
arithmetic discrete planes P(v, ‖v‖∞), by showing that iterations of dual substitutions yield
concentric annuli (see Definition 4.7) with increasing radius. The main result of this section is
the following.
Proposition 4.1. If v ∈ F3, then

⋃∞
n=0 Pn = P(v, ‖v‖∞).

The proof will be given at the end of Section 4.4. The remaining of this section is devoted to
the development of specific tools used in this proof. Such tools have also been used in [BJS12] to
study other multidimensional continued fraction algorithms.

4.1 Definition of the patterns Pn

Let U stand for the lower half unit cube at the origin, that is, U = [0, 1]? ∪ [0, 2]? ∪ [0, 3]? = .
Definition 4.2 (Patterns Pn). Let v ∈ F3 be a vector with F-expansion (in)n∈N. We define:
• Pn = ΣFS

i1 · · ·Σ
FS
in (U) for n > 1 and P0 = U ;

• Pn = {x : [x, i]? ∈ Pn} for n > 0.
Proposition 4.3. Let v ∈ F3. For every n ∈ N, we have Pn ⊆ Tn.
Proof. We first remark that E?

1(σFS
i )(U) = U ∪ [e1, 2]? ∪ [e1, 3]? = for all i ∈ {1, 2, 3}. For

n ∈ N, we have

Pn+1 = E?
1(σn+1 ◦ · · · ◦ σ1)(U)

= E?
1(σn ◦ · · · ◦ σ1) ◦E?

1(σn+1)(U)
= Pn ∪E?

1(σn ◦ · · · ◦ σ1)([e1, 2]? ∪ [e1, 3]?),

which implies Pn ⊆ Pn+1. Since [e1, 2]? ∪ [e1, 3]? ⊆ e1 + U , we have Pn+1 ⊆ Pn ∪ E?
1(σn ◦ · · · ◦

σ1)(e1 + U). By Definition 2.12, we then have

E?
1(σn ◦ · · · ◦ σ1)(e1 + U) = M−1

σn◦···◦σ1 · e1 + E?
1(σn ◦ · · · ◦ σ1)(U)

= (tMn · · · tM1)−1 · e1 + Pn

= t(M1 · · ·Mn)−1 · e1 + Pn,

where Mn = tMσFS
in
, which proves that Pn ⊆ Pn+1 ⊆ Pn ∪ (Pn + t(M1 · · ·Mn)−1 · e1). The

result now follows by induction.

As a direct consequence of Propositions 4.3 and 4.1, we obtain that if v ∈ F3, then
P(v, ‖v‖∞) ⊆

⋃∞
n=0 Tn, i.e., the naive plane of normal vector v is included in

⋃∞
n=0 Tn.
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4.2 Covering properties and annuli

A pattern is a union of unit faces. In the rest of this section we will consider some sets of
connected patterns (L, Ledge and LFS) that will be needed in order to define (strong) coverings.
The patterns contained in these sets are considered up to translation only, as it is all that matters
for the definitions below (see Figure 2).

Definition 4.4 (L-cover). Let L be a set of patterns. A pattern P is L-covered if for all faces
e, f ∈ P , there exist Q1, . . . , Qn ∈ L such that:

1. e ∈ Q1 and f ∈ Qn;
2. Qk ∩Qk+1 contains at least one face, for all k ∈ {1, . . . , n− 1};
3. Qk ⊆ P for all k ∈ {1, . . . , n}.

Lemma 4.5 ([IO93]). Let P be an L-covered pattern, Σ a dual substitution and L a set of
patterns such that Σ(Q) is L-covered for all Q ∈ L. Then Σ(P ) is L-covered.

We will need strong coverings to ensure that the image of an annulus is an annulus. We
denote by Ledge the set of all the twelve edge-connected two-face patterns (up to translation).

Definition 4.6 (Strong L-cover). Let L be a set of edge-connected patterns. A pattern P is
strongly L-covered if

1. P is L-covered;
2. for every pattern X ∈ Ledge such that X ⊆ P , there exists a pattern Y ∈ L such that
X ⊆ Y ⊆ P .

The intuitive idea behind the notion of strong L-covering is that every occurrence of a pattern
of Ledge in P is required to be “completed within P” by a pattern of L.

Definition 4.7 (Annulus). Let L be a set of edge-connected patterns and Γ be a stepped plane.
An L-annulus of a pattern P ⊆ Γ is a pattern A ⊆ Γ such that:

1. P , A ∪ P and Γ \ (A ∪ P ) are L-covered;
2. A is strongly L-covered;
3. A and P have no face in common;
4. P ∩ Γ \ (P ∪A) = ∅.

The notation Γ \ (P ∪A) stands for the topological closure of Γ \ (P ∪ A). Conditions 1
and 2 are combinatorial properties that we will use in the proof of Lemma 4.13 in order to prove
that the image of an LFS-annulus by a ΣFS

i is an LFS-annulus. Conditions 3 and 4 are properties
of topological nature that we want annuli to satisfy.

4.3 Covering properties for Σ1, Σ2, Σ3

Let LFS be the set of patterns containing , , , , , ∈ Ledge and

= [0, 2]? ∪ [(1, 0, 0), 2]? ∪ [0, 3]?,

= [0, 3]? ∪ [(1, 0, 0), 3]? ∪ [0, 2]?,

= [0, 3]? ∪ [(0, 1, 0), 3]? ∪ [0, 1]?.

Lemma 4.8 (LFS-covering). Let P be an LFS-covered pattern. Then the pattern Σi(P ) is
LFS-covered for every i ∈ {1, 2, 3}.

Proof. The proof relies on Lemma 4.5 because Σi(P ) is LFS-covered for all P ∈ LFS, which can
be checked by inspection of the twenty-seven cases below.
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L =
{

, ,

}

P =

Figure 2: On the left, the pattern P is L-covered. Two faces of P are connected via a sequence of
patterns from L. On the right, examples of LFS-annulus. Patterns P0  P4  P7 are defined by
P0 = U and Pi+1 = ΣFS

3 (Pi). The lighter pattern P7 \ P4 is a LFS-annulus of P4 and the darker
pattern P4 \ P0 is an LFS-annulus of P0.

P Σ1(P ) Σ2(P ) Σ3(P )

Lemma 4.9. Let Γ be a stepped plane that does not contain any translate of one of the patterns
, , ∈ Ledge and = [0, 3]? ∪ [(1, 1, 0), 3]?. Then no translate of any of these four patterns

appears in Σi(Γ).

Proof. The patterns and admit no preimage that is included in a discrete plane, as can be
checked using Lemma 2.14 and Definition 2.2, so they cannot appear in Σi(Γ).

For the two other cases, below are listed their possible preimages (in light gray) obtained by
applying Lemma 2.14, together with their only possible “completion” within a discrete plane (in
dark gray) following from Definition 2.2.

i Σ−1
i ( )

1 or

2 or

3 or

i Σ−1
i ( )

1 or

2 or

3 or

These two tables show that if one of these two patterns appears in Σ(Γ), then one of the four
patterns must appear in Γ, which concludes the proof.

Lemma 4.10 (Strong LFS-covering). Let P be a strongly LFS-covered pattern which is contained
in a stepped plane that avoids , , and . Then Σi(P ) is strongly LFS-covered for every
i ∈ {1, 2, 3}.
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Proof. Let i ∈ {1, 2, 3}. The pattern Σ(P ) is LFS-covered thanks to Lemma 4.8. Now, let
X ⊆ Σi(P ) be an element of Ledge. We must prove that there exists Y ∈ LFS such that
X ⊆ Y ⊆ Σ(P ).

If X is a translation of one of the six patterns , , , , , , then the strong covering
condition is trivially verified by taking X = Y . By assumption and by Lemma 4.9, Σ(P ) does
not contain any translate of , or , so we ignore these cases for X.

It remains to treat the cases X = , or . We have X ⊆ Σ(P ), so it is sufficient
to check that for every pattern Q ⊆ P such that X ⊆ Σ(Q), there exists Y ∈ LFS such that
X ⊆ Y ⊆ Σ(Q). Moreover, since X is a two-face pattern, we can restrict to the case where Q
consists of two faces only, which leaves a finite number of cases to check for Q (using Lemma 2.14):

i Q Σi(Q)
1
1
2
2
3
3

i Q Σi(Q)
1
1
2
2
3
3

i Q Σi(Q)
1
1
2
2
3
3

The case of the first, third and fifth rows of each table is settled:

• if X = , then Y = ∈ LFS works;
• if X = , then Y = ∈ LFS works;
• if X = , then Y = ∈ LFS works.

For the second row of the first table with Q = , P is strongly LFS-covered so we have Q ⊆
Y0 ⊆ P with Y0 = ∈ LFS. It follows that X ⊆ Σ1(Y0) = , so taking Y = Σ1(Y0) ∈ LFS
works. The cases of the second and fourth rows of the second table can be dealt with similarly.

In the last row of the third table with we have Q = , so must appear in Γ, which is
forbidden by assumption. This can be seen by using Definition 2.2 to compute the only possible
“completion” of Q within Γ (shown in dark gray): . In all the remaining cases, Q is a pattern
which is not allowed in Γ by assumption, so they can be ignored.

4.4 Annuli and dual substitutions

The proof of the following proposition (by induction) relies on Lemma 4.12 (base case) and on
Lemma 4.13 (induction step). We recall that U = [0, 1]? ∪ [0, 2]? ∪ [0, 3]? = .

Proposition 4.11. Let (Σi)n∈N be a sequence with values in {ΣFS
1 ,ΣFS

2 ,ΣFS
3 } such that ΣFS

3
occurs infinitely often, and let k ∈ N be such that (Σ1, . . . ,Σk) contains ΣFS

3 at least four times.
Then for every ` > 1, Σ1 · · ·Σk+`(U) \ Σ1 · · ·Σ`(U) is an LFS-annulus of Σ1 · · ·Σ`(U) in the

stepped plane Σ1 · · ·Σk+`(Γ(1,1,1)).

Proof. We prove the result by induction on `. The case ` = 0 (i.e., Σ1 · · ·Σk(U) \U is an annulus
of U) is settled by Lemma 4.12. Now, assume that the induction property holds for some ` ∈ N.
The pattern Σ1 · · ·Σk+`(U) is contained in the stepped plane Σk+`(Γ(1,1,1)), so it does not contain
any of the patterns forbidden by Lemma 4.9. We can then apply Lemma 4.13 to deduce that
Σ1 · · ·Σk+`+1(U) \ Σ1 · · ·Σ`+1(U) is an LFS-annulus of Σ1 · · ·Σ`+1(U).

Lemma 4.12. Let Σ be a product of Σ1, Σ2 and Σ3 such that Σ3 appears at least four times.
Then Σ(U) \ U is an LFS-annulus of U in Σ(Γ(1,1,1)).

Proof. Below, “P i→ Q” means that Q ⊆ Σi(P ) so the result follows.
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1, 2, 3 3 3 3

1, 2 1, 2 1, 2 1, 2, 3

Lemma 4.13. Let Γ be a stepped plane that avoids , , and . Let A ⊆ Γ be an LFS-
annulus of a pattern P ⊆ Γ, and let Σ = Σi for some i ∈ {1, 2, 3}. Then Σ(A) is an LFS-annulus
of Σ(P ) in the stepped plane Σ(Γ).

Proof. We must prove the following:

1. Σ(P ), Σ(A) ∪ Σ(P ) and Γ \ (Σ(A) ∪ Σ(P )) are LFS-covered;
2. Σ(A) is strongly LFS-covered;
3. Σ(A) and Σ(P ) have no face in common;
4. Σ(P ) ∩ Σ(Γ) \ (Σ(P ) ∪ Σ(A)) = ∅.

Conditions 1 and 3 hold thanks to Lemma 4.5 and Proposition 2.13 respectively, and 2 holds
thanks to Lemma 4.10. It remains to prove that 4 holds.

Suppose that 4 does not hold. This implies that there exist faces f ∈ P, g ∈ Γ \ (A ∪ P ), f ′ ∈
Σ(f) and g′ ∈ Σ(g) such that f ′ and g′ have a nonempty intersection. Also, f ∪ g must be
disconnected because P and Γ \ (P ∪A) have empty intersection by hypothesis.

The strategy of the proof is as follows: we check all the possible patterns f ∪ g and f ′ ∪ g′ as
above, and for each case we derive a contradiction. This can be done by inspection of a finite
number of cases. Indeed, there are 36 possibilities for f ′ ∪ g′ up to translation (the number of
connected two-face patterns that share a vertex or an edge), and each of these patterns has a
finite number of two-face preimages.

The first patterns f ′∪ g′ which have disconnected preimages are f ′∪ g′ = [0, 3]?∪ [(1, 1, 0), 3]?
or [0, 2]?∪ [(1,−1, 1), 1]? or [0, 2]?∪ [(1, 0, 1), 2]?. These cases can be ignored thanks to Lemma 4.9:
the first case ( ) is forbidden by assumption. In the second case, Definition 2.2 implies that if
a stepped plane contains f ′ ∪ g′, then it contains the face [(0, 0, 1), 2]? shown in dark gray .
This contains a pattern ruled out by Lemma 4.9, which settles this case. The third case can be
treated in the same way.

Another possibility is f ′∪g′ = [0, 2]?∪[(1,−1, 1), 3]?, which admits six disconnected preimages
(two for each Σi). They are shown below (in light gray), together with their only possible
completion within a stepped plane (in dark gray), which can be deduced from Definition 2.2:

Σ1 : , Σ2 : , Σ3 : , .

The patterns that appear in dark gray are forbidden by Lemma 4.9, so this case is settled.
The last two possibilities are f ′∪g′ = [0, 3]?∪ [(1, 1,−1), 1]? or f ′∪g′ = [0, 3]?∪ [(1, 1,−1), 2]?.

Below (in light gray) are all the possible preimages f ∪ g (which are the same for the two
possibilities), and in dark gray is shown their only possible completion X within a stepped plane:

Σ1 : , Σ2 : , Σ3 : , .

Now, we have X ⊆ A because Condition 4 for A and P would fail otherwise (f and g cannot
touch). However, this contradicts the fact that strongly LFS-connected. Indeed, X ∈ Ledge but
there cannot exist a pattern Y ∈ LFS such that X ⊆ Y ⊆ A because then we must have Y = ,

or , so Y must overlap with f or g, which is impossible because f and g are not in A.

Proof of Proposition 4.1. Let v ∈ F3. To prove the proposition, it is enough to prove that
∪∞n=0Pn = Γv, thanks to Remark 2.3. Let P ∈ Γv be a finite pattern. The combinatorial radius
of P is defined to be the length of the smallest path of edge-connected unit faces from the origin
to Γv \ P .
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Now, since v ∈ F3, ΣFS
3 occurs infinitely many often in the sequence (Σi)i∈N of the dual

substitutions associated with the F-expansion of v. Hence, we can apply Proposition 4.11 to prove
that there exists k ∈ N such that for all ` > 0, the pattern A` = Σ1 · · ·Σk+`(U) \ Σ1 · · ·Σ`(U) is
an LFS-annulus of Σ1 · · ·Σ`(U).

By Condition 1 of Definition 4.7, the pattern A` ∪ Σ1 · · ·Σ`(U) is simply connected for all
` > 0, so its combinatorial radius increases at least by 1 when ` is incremented, thanks to
Conditions 3 4. This proves the required property.

5 Connectedness at the critical thickness

We can now prove our main result, namely the characterization of the normal vectors v for which
the arithmetical discrete plane is 2-connected at the connecting thickness Ω(v).

5.1 Technical lemmas

In the present section, we provide technical properties for dimensions d = 3, 2, 1 which will
allow us to use argumentsof dimension reduction. Let us first provide several notation and
definitions. Let d > 1 be an integer and let O+

d = {v ∈ Zd | 0 6 v1 6 . . . 6 vd}. The notion
of 2-connectedness extends in a natural way to (d− 1)-connectedness in Zd, which induces the
corresponding notion of connecting thickness Ω(v) for v ∈ Zd, as well as the notion of arithmetical
discrete line in Z2.

Notation 1 (Extension of gcd). Let (α, β) ∈ R2
+ such that dimQ(v1,v2) = 1. There exists

γ ∈ R+ such that (γα, γβ) ∈ N2 and we set gcd(α, β) = gcd(γα, γβ)
γ

. One checks that this
definition does not depend on the choice of γ.

Lemma 5.1 allows us to restrict further the domain of investigated normal vectors v to the
ones with only non-zero coordinates.

Lemma 5.1. Let v ∈ O+
d and ω ∈ R. Assume that v1 = 0 and let v′ = (v2, . . . ,vd) ∈ O+

d−1.
Then P(v, ω) is (d − 1)-connected in Zd if and only if P(v′, ω) is (d − 2)-connected in Zd−1.
Consequently, Ω(v) = Ω(v′).

Proof. Let P = P(v, ω) and P′ = P(v′, ω). We have

P = {x ∈ Zd | 0 6 〈v,x〉 < ω}
= {(x1,x′) ∈ Zd | 0 6 〈v′,x′〉 < ω}
= Z×P′,

by writing x = (x1,x′) with x1 ∈ Z and x′ ∈ P′.
Assume that P′ is (d−2)-connected, and let x,y ∈ P. We write x = (x1,x′) and y = (y1,y′),

where x1,y1 ∈ Z and x′,y′ ∈ P′. There exists a (d − 2)-connected path (z′1, . . . , z′n) from
x′ to y′ in P′. We assume that y1 > x1 (otherwise, we exchange x and y). The path
((x1, z′1), . . . , (x1, z′n), (x1 + 1, z′n), (x1 + 2, z′n), . . . , (y1, z′n)) is a (d− 1)-connected path between
x and y in P.

Assume now that P is connected and let x′,y′ ∈ P′. We have (0,x′) ∈ P and (0,y′) ∈ P.
There exists a (d − 1)-connected path (z1, . . . , zn) between (0,x′) and (0,y′) in P. For each
i = 1, . . . , n, write zi = (zi,1, z′i). Then the sequence (z′1, . . . , z′n) is a (d − 2)-connected path
between x′ and y′ in P′.

Let us deal with the special case where the normal vector v has exactly one non-zero
coordinate. We characterize completely the set of thicknesses ω for which P(v, ω) is connected.
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Lemma 5.2. Let d = 2, 3. Let v ∈ O+
d and ω ∈ R. If v has exactly one non-zero coordinate,

then P(v, ω) is (d− 1)-connected as soon as ω > 0. Consequently, Ω(v) = 0.

Proof. The only non-zero coordinate of v is vd. According to Lemma 5.1, P(v, ω) is (d − 1)-
connected if and only if P(vd, ω) is 0-connected. Now, P(vd, ω) = {x ∈ Z | 0 6 vd x < ω} is
an interval of Z. It is (d− 1)-connected as soon as it is not empty (by definition) which means
ω > 0.

Lemma 5.3 (An upper-bound for Ω(v)). Let v ∈ O+
3 and ω ∈ R. We assume v 6= 0. We set

ξ(v) = min{|vi| | vi 6= 0}. If ω > ‖v‖∞ + ξ(v), then P(v, ω) is 2-connected. Consequently,
Ω(v) 6 ‖v‖∞ + ξ(v).

Proof. Assume first d = 1. Since v 6= 0, we have v1 > 0. One has P(v, ω) 0-connected as soon
as ω > 0, hence, in particular, if ω > ξ(v) + ‖v‖∞ = 2 v1.

Let us now assume that d = 2 or 3 and that the result holds for all d′ < d. We prove this
result by induction on d.

If v1 = 0 then we set v′ = (v2, . . . ,vd) and in this case, thanks to Lemma 5.1, P(v, ω) is
(d− 1)-connected in Zd if P(v′, ω) is (d− 2)-connected in Zd−1. Then we get the result by the
induction hypothesis because ξ(v′) = ξ(v) and ‖v′‖∞ = ‖v‖∞.

If v1 > 0 then we set v′ = (v1, . . . ,vd−1). We have ξ(v′) = ξ(v) = v1 and ‖v′‖∞ =
vd−1 6 vd = ‖v‖∞. For all z ∈ Z, let Pz = {(x1, . . . ,xd−1, z) | (x1, . . . ,xd−1) ∈ Zd−1, 0 6
v1 x1 + · · ·+ vd−1 xd−1 + vd z < ω}. We have P(v, ω) =

⋃
z∈ZPz.

If Pz is connected in Zd, then the projection P′z of Pz on the d − 1 first coordinates is
connected. If ω > ξ(v) + ‖v‖∞ then ω > ξ(v′) + ‖v′‖∞, and, by the induction hypothesis, P′z is
connected; therefore, Pz is connected. We are left to prove that the Pz’s are adjacent, that is,

∀z ∈ Z, ∃x1, . . . ,xd−1 ∈ Z, (x1, . . . ,xd−1, z) ∈ Pz, (x1, . . . ,xd−1, z + 1) ∈ Pz+1

or equivalently

∀z ∈ Z, ∃x1, . . . ,xd−1 ∈ Z, 0 6 v1 x1 + · · ·+ vd−1 xd−1 + vd z < ω − vd. (3)

We distinguish two cases according to whether dimQ(v1, . . . ,vd−1) = 1 or dimQ(v1, . . . ,vd−1) > 2.

• If dimQ(v1, . . . ,vd−1) = 1 then let γ = gcd(v1, . . . ,vd−1). We have v1 Z+· · ·+vd−1 Z = γ Z
and Condition (3) is equivalent to

∀z ∈ Z, ∃u ∈ Z, 0 6 γ u+ vd z < ω − vd ⇐⇒ ∀z ∈ Z, ω − vd > (vd z) mod γ,

which is satisfied as soon as ω > vd + γ, and especially if ω > vd + v1 because v1 > γ.
• If dimQ(v1, . . . ,vd−1) > 2 then we must have d > 3 and v1 Z + · · · + vd−1 Z is dense in
R. Condition (3) is satisfied as soon as ω − vd > 0, and especially if ω > vd + v1 because
v1 > 0.

Lemma 5.4. Let v ∈ O+
3 with dimQ(v1,v2,v3) > 1. If v1 + v2 6 v3 and v(n)

1 > 0 for all n ∈ N,
then Ω(v) = ‖v‖∞. In particular, the arithmetical discrete plane P(v,Ω(v)) is not 2-connected.

Proof. For all n ∈ N?, we set ω(n) =
∑n−1
i=0 v

(i)
1 . Then, for all n ∈ N?, Ω(v) = Ω(v(n)) + ω(n). We

set ξ(v) = min{|vi| | vi 6= 0}. One has by [JT09, Lemma12] together with Lemma 5.3

‖v‖∞ 6 Ω(v) 6 ‖v‖∞ + ξ(v),

and thus
‖v(n)‖∞ 6 Ω(v(n)) 6 ‖v(n)‖∞ + ω(n+1) − ω(n),

15



or equivalently

‖v(n)‖∞ + ω(n) 6 Ω(v) = Ω(v(n)) + ω(n) 6 ‖v(n)‖∞ + ω(n+1).

Since v1 + v2 6 v3, then v(n)
1 + v(n)

2 6 v(n)
3 , for all n ∈ N?. It follows that limn→∞ v(n) =

(0, 0,v3− (v1 + v2)) and limn→∞ ω
(n) = v1 + v2. The non-2-connectedness of P(v,Ω(v)) follows

from the fact that P(v(n), ‖v(n)‖∞) is not 2-connected by [JT09].

Now it becomes natural to investigate the critical thickness of normal vectors v for which
dimQ(v1,v2,v3) = 2, v1 + v2 6 v3 and there exists n0 ∈ N such that v(n0)

1 = 0. Note that in
that case, dimQ(v1,v2) = 1. Indeed v1 + v2 6 v3 implies that v(n)

1 + v(n)
2 6 v(n)

3 for all n ∈ N.

Lemma 5.5. Let v ∈ O+
3 with dimQ(v1,v2,v3) = 2 and v1 + v2 6 v3. Let n0 ∈ N be such that

v(n0)
1 = 0. The arithmetical discrete plane P(v,Ω(v)) is 2-connected and Ω(v) = v3 +gcd(v1,v2).

Proof. According to Lemma 5.1, the arithmetical discrete plane P(v,Ω(v)) is 2-connected if
P(v(n0),Ω(v(n0))) is 1-connected in Z2. In fact, P(v(n0),Ω(v(n0))) is a standard discrete line in
Z2. Thus, Ω(v(n0))) = ‖v(n0)‖1 and P(v(n0),Ω(v(n0))) is 1-connected, which yields P(v,Ω(v))
2-connected.

One checks that, for all n ∈ N,

v3 − (v1 + v2) = v(n)
3 − (v(n)

1 + v(n)
2 ) = v(n0)

3 − v(n0)
2 ,

and
‖v‖1 − 2Ω(v) = ‖v(n)‖1 − 2Ω(v(n)) = ‖v(n0)‖1 − 2Ω(v(n0)) = −‖v(n0)‖1.

Hence, Ω(v) = ‖v‖1 + ‖v(n0)‖1
2 . It remains to express ‖v(n0)‖1 in terms of v1, v2 and v3.

Since v1 + v2 6 v3, we deduce that v(n)
1 + v(n)

2 6 v(n)
3 for all n ∈ N, v(n0)

2 = gcd(v1,v2) and
v(n0)

3 = v3 − (v1 + v2)− gcd(v1,v2). It follows that Ω(v) = v3 + gcd(v1,v2).

5.2 Critical connectedness

Theorem 5.6. Let v ∈ O+
3 with v 6= 0. The arithmetical discrete plane P(v,Ω(v)) is 2-connected

if and only if one of the following two conditions holds:

1. either v ∈ F3;
2. or there exists n ∈ N such that v(n)

1 = 0 with dimQ(v(n)
2 ,v(n)

3 ) = 2.

Proof. Let v ∈ O+
3 .

• We first suppose that v ∈ F3 and let x ∈ P(v,Ω(v)). Thanks to Theorem 2.6 we have
Ω(v) = ‖v‖1/2. If ‖v‖∞ 6 〈x,v〉 < ‖v‖1/2, then ‖v‖∞−v1 6 〈x−e1,v〉 < ‖v‖1/2−v1 <
‖v‖∞, x− e1 ∈ P(v, ‖v‖∞). In other words, an element x of P(v,Ω(v)) either belongs to
P(v, ‖v‖∞) or is 2-adjacent to an element of P(v, ‖v‖∞).
Now, given y ∈ P(v,Ω(v)), both x and y belong, or are adjacent to P(v, ‖v‖∞), so they
are 2-connected in P(v,Ω(v)) because:
◦ P(v, ‖v‖∞) ⊆ ∪∞n=0Tn, thanks to Propositions 4.3 and 4.1,
◦ ∪∞n=0Tn is 2-connected: it is an increasing union of sets Tn which are 2-connected

thanks to Proposition 3.3,
◦ ∪∞n=0Tn ⊆ P(v,Ω(v)), thanks to Proposition 3.2.

• Assume now v 6∈ F3 and there exists n ∈ N such that v(n)
1 = 0 with dimQ(v(n)

2 ,v(n)
3 ) = 2.

The arithmetical discrete plane P(v,Ω(v)) is 2-connected if so is P(v(n),Ω(v(n))), by
Theorem 2.6. We conclude by noticing that P(v(n),Ω(v(n)) is 2-connected thanks to
Lemma 5.5.
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We now prove the converse implication. We thus assume that the arithmetical discrete plane
P(v,Ω(v)) is 2-connected. A priori, several cases occur.

1. Suppose dimQ(v1,v2,v3) = 1. We first assume v ∈ Z3 and gcd(v1,v2,v3) = 1. Let
n1 ∈ N be such that v(n1)

1 = 0, and let n2 ∈ N such that v(n2)
2 = 0. Then, P(v,Ω(v))

2-connected implies that P(v(n)
3 ,Ω(v(n)

3 )) is connected for n > n2, by Theorem 2.6 together
with Lemma 5.1. Now, from Lemma 5.2, Ω(v(n)

3 ) = 0 and P(v(n)
3 , 0) is empty, hence

not connected (by definition), a contradiction. This also implies that we cannot have
2-connectedness if dimQ(v1,v2,v3) = 1 (even if v 6∈ Z3 and gcd(v1,v2,v3) 6= 1).

2. Suppose dimQ(v1,v2,v3) > 1 with v 6∈ F3. Moreover, suppose v(n)
1 > 0 for all n ∈ N. Let

n ∈ N such that v(n)
1 + v(n)

2 6 v(n)
3 . One has P(v(n),Ω(v(n))) 2-connected by Theorem 2.6.

According to Lemma 5.4, Ω(v(n)) = ‖v(n)‖∞ and the plane P(v(n),Ω(v(n))) is not 2-
connected, a contradiction.

By Proposition 2.10, the two remaining possible cases are either v ∈ F3, or dimQ(v(n)
2 ,v(n)

3 ) = 2
and there exists n ∈ N such that v(n)

1 = 0.
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